Carles Perez-Lopez, Alexis Molina, Estrella Lozoya, Victor Segarra, Marti Municoy, Victor Guallar
{"title":"Combining machine-learning and molecular-modeling methods for drug-target affinity predictions","authors":"Carles Perez-Lopez, Alexis Molina, Estrella Lozoya, Victor Segarra, Marti Municoy, Victor Guallar","doi":"10.1002/wcms.1653","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML) techniques offer a novel and exciting approach in the drug discovery field. One might even argue that their current expansion may push traditional MM modeling techniques to a secondary role in modeling methods. In this review article, we advocate that a combination of both techniques could be the most efficient implementation in the coming years. Focusing on drug-target affinity predictions, we first review pure ML approaches. Then, we introduced recent developments in mixing ML and MM methods in a single combined manner. Finally, we show the detailed implementation of a real industrial prospective study where nanomolar hits, on a kinase target, were obtained by combination of state of the art Monte Carlo MM simulations (PELE) with a ML ranking function.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1653","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Machine learning (ML) techniques offer a novel and exciting approach in the drug discovery field. One might even argue that their current expansion may push traditional MM modeling techniques to a secondary role in modeling methods. In this review article, we advocate that a combination of both techniques could be the most efficient implementation in the coming years. Focusing on drug-target affinity predictions, we first review pure ML approaches. Then, we introduced recent developments in mixing ML and MM methods in a single combined manner. Finally, we show the detailed implementation of a real industrial prospective study where nanomolar hits, on a kinase target, were obtained by combination of state of the art Monte Carlo MM simulations (PELE) with a ML ranking function.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.