Dr. Daniel Offenbartl-Stiegert, Alexia Rottensteiner, Dr. Adam Dorey, Prof. Stefan Howorka
{"title":"A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes","authors":"Dr. Daniel Offenbartl-Stiegert, Alexia Rottensteiner, Dr. Adam Dorey, Prof. Stefan Howorka","doi":"10.1002/anie.202210886","DOIUrl":null,"url":null,"abstract":"<p>Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"61 52","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202210886","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202210886","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.