{"title":"Neural-Network Parameterization of Subgrid Momentum Transport in the Atmosphere","authors":"Janni Yuval, Paul A. O’Gorman","doi":"10.1029/2023MS003606","DOIUrl":null,"url":null,"abstract":"<p>Attempts to use machine learning to develop atmospheric parameterizations have mainly focused on subgrid effects on temperature and moisture, but subgrid momentum transport is also important in simulations of the atmospheric circulation. Here, we use neural networks to develop a subgrid momentum transport parameterization that learns from coarse-grained output of a high-resolution atmospheric simulation in an idealized aquaplanet domain. We show that substantial subgrid momentum transport occurs due to convection. The neural-network parameterization has skill in predicting momentum fluxes associated with convection, although its skill for subgrid momentum fluxes is lower compared to subgrid energy and moisture fluxes. The parameterization conserves momentum, and when implemented in the same atmospheric model at coarse resolution it leads to stable simulations and tends to reduce wind biases, although it over-corrects for one configuration tested. Overall, our results show that it is challenging to predict subgrid momentum fluxes and that machine-learning momentum parameterization gives promising results.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003606","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS003606","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Attempts to use machine learning to develop atmospheric parameterizations have mainly focused on subgrid effects on temperature and moisture, but subgrid momentum transport is also important in simulations of the atmospheric circulation. Here, we use neural networks to develop a subgrid momentum transport parameterization that learns from coarse-grained output of a high-resolution atmospheric simulation in an idealized aquaplanet domain. We show that substantial subgrid momentum transport occurs due to convection. The neural-network parameterization has skill in predicting momentum fluxes associated with convection, although its skill for subgrid momentum fluxes is lower compared to subgrid energy and moisture fluxes. The parameterization conserves momentum, and when implemented in the same atmospheric model at coarse resolution it leads to stable simulations and tends to reduce wind biases, although it over-corrects for one configuration tested. Overall, our results show that it is challenging to predict subgrid momentum fluxes and that machine-learning momentum parameterization gives promising results.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.