Christofer Baldwin, Johntaehwan Kim, Srikanth Sivaraman, Raj R. Rao
{"title":"Stem cell-based strategies for skeletal muscle tissue engineering","authors":"Christofer Baldwin, Johntaehwan Kim, Srikanth Sivaraman, Raj R. Rao","doi":"10.1002/term.3355","DOIUrl":null,"url":null,"abstract":"<p>Skeletal muscle tissue engineering has been a key area of focus over the years and has been of interest for developing regenerative strategies for injured or degenerative skeletal muscle tissue. Stem cells have gained increased attention as sources for developing skeletal muscle tissue for subsequent studies or potential treatments. Focus has been placed on understanding the molecular pathways that govern skeletal muscle formation in development to advance differentiation of stem cells towards skeletal muscle fates in vitro. Use of growth factors and transcription factors have long been the method for guiding skeletal muscle differentiation in vitro. However, further research in small molecule induced differentiation offers a xeno-free option that could result from use of animal derived factors.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1061-1068"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3355","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Skeletal muscle tissue engineering has been a key area of focus over the years and has been of interest for developing regenerative strategies for injured or degenerative skeletal muscle tissue. Stem cells have gained increased attention as sources for developing skeletal muscle tissue for subsequent studies or potential treatments. Focus has been placed on understanding the molecular pathways that govern skeletal muscle formation in development to advance differentiation of stem cells towards skeletal muscle fates in vitro. Use of growth factors and transcription factors have long been the method for guiding skeletal muscle differentiation in vitro. However, further research in small molecule induced differentiation offers a xeno-free option that could result from use of animal derived factors.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.