Meaningful local signalling in sinoatrial node identified by random matrix theory and PCA

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Physics Complexity Pub Date : 2023-01-01 DOI:10.1088/2632-072X/acadc8
Chloe F. Norris, A. Maltsev
{"title":"Meaningful local signalling in sinoatrial node identified by random matrix theory and PCA","authors":"Chloe F. Norris, A. Maltsev","doi":"10.1088/2632-072X/acadc8","DOIUrl":null,"url":null,"abstract":"The sinoatrial node (SAN) is the pacemaker of the heart. Recently calcium signals, believed to be crucially important in rhythm generation, have been imaged in intact SAN and shown to be heterogeneous in various regions of the SAN with a lot of analysis relying on visual inspection rather than mathematical tools. Here we apply methods of random matrix theory (RMT) developed for financial data and various biological data sets including β-cell collectives and electroencephalograms (EEG) to analyse correlations in SAN calcium signals using eigenvalues and eigenvectors of the correlation matrix. We use principal component analysis to locate signalling modules corresponding to localization properties the eigenvectors corresponding to high eigenvalues. We find that the top eigenvector captures the global behaviour of the SAN i.e. action potential (AP) induced calcium transient. In some cases, the eigenvector corresponding to the second highest eigenvalue yields a pacemaker region whose calcium signals predict the AP. Furthermore, using new analytic methods, we study the relationship between covariance coefficients and distance, and find that even inside the central zone, there are non-trivial long range correlations, indicating intercellular interactions in most cases. Lastly, we perform an analysis of nearest-neighbour eigenvalue distances and find that it coincides with universal Wigner surmise under all available experimental conditions, while the number variance, which captures eigenvalue correlations, is sensitive to experimental conditions. Thus RMT application to SAN allows to remove noise and the global effects of the AP-induced calcium transient and thereby isolate the local and meaningful correlations in calcium signalling.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acadc8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

The sinoatrial node (SAN) is the pacemaker of the heart. Recently calcium signals, believed to be crucially important in rhythm generation, have been imaged in intact SAN and shown to be heterogeneous in various regions of the SAN with a lot of analysis relying on visual inspection rather than mathematical tools. Here we apply methods of random matrix theory (RMT) developed for financial data and various biological data sets including β-cell collectives and electroencephalograms (EEG) to analyse correlations in SAN calcium signals using eigenvalues and eigenvectors of the correlation matrix. We use principal component analysis to locate signalling modules corresponding to localization properties the eigenvectors corresponding to high eigenvalues. We find that the top eigenvector captures the global behaviour of the SAN i.e. action potential (AP) induced calcium transient. In some cases, the eigenvector corresponding to the second highest eigenvalue yields a pacemaker region whose calcium signals predict the AP. Furthermore, using new analytic methods, we study the relationship between covariance coefficients and distance, and find that even inside the central zone, there are non-trivial long range correlations, indicating intercellular interactions in most cases. Lastly, we perform an analysis of nearest-neighbour eigenvalue distances and find that it coincides with universal Wigner surmise under all available experimental conditions, while the number variance, which captures eigenvalue correlations, is sensitive to experimental conditions. Thus RMT application to SAN allows to remove noise and the global effects of the AP-induced calcium transient and thereby isolate the local and meaningful correlations in calcium signalling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用随机矩阵理论和主成分分析识别窦房结有意义的局部信号
窦房结(SAN)是心脏的起搏器。最近,钙信号被认为在节律产生中至关重要,已经在完整的SAN中成像,并且在SAN的不同区域显示出异质性,大量的分析依赖于视觉检查而不是数学工具。在这里,我们应用随机矩阵理论(RMT)为金融数据和各种生物数据集(包括β细胞群和脑电图)开发的方法,利用相关矩阵的特征值和特征向量分析SAN钙信号的相关性。我们使用主成分分析来定位与高特征值对应的特征向量对应的定位属性的信号模块。我们发现顶部特征向量捕获了SAN的全局行为,即动作电位(AP)诱导的钙瞬态。在某些情况下,第二高特征值对应的特征向量产生一个起搏器区域,其钙信号预测AP。此外,使用新的分析方法,我们研究了协方差系数与距离之间的关系,发现即使在中心区域内,也存在非平凡的长距离相关性,表明在大多数情况下细胞间相互作用。最后,我们对最近邻特征值距离进行了分析,发现它在所有可用的实验条件下都符合普遍的Wigner猜想,而捕获特征值相关性的数方差对实验条件很敏感。因此,将RMT应用于SAN可以去除ap诱导的钙瞬态的噪声和全局影响,从而分离钙信号传导中的局部和有意义的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
期刊最新文献
Persistent Mayer Dirac. Fitness-based growth of directed networks with hierarchy The ultrametric backbone is the union of all minimum spanning forests. Exploring the space of graphs with fixed discrete curvatures Augmentations of Forman’s Ricci curvature and their applications in community detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1