Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photo-Fenton Process

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2021-08-09 DOI:10.1002/anie.202108937
Lina Su, Dr. Pengfei Wang, Dr. Xiaoli Ma, Junhui Wang, Prof. Sihui Zhan
{"title":"Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photo-Fenton Process","authors":"Lina Su,&nbsp;Dr. Pengfei Wang,&nbsp;Dr. Xiaoli Ma,&nbsp;Junhui Wang,&nbsp;Prof. Sihui Zhan","doi":"10.1002/anie.202108937","DOIUrl":null,"url":null,"abstract":"<p>The activity of heterogeneous photocatalytic H<sub>2</sub>O<sub>2</sub> activation in Fenton-like processes is closely related to the local electron density of reaction centre atoms. However, the recombination of electron-hole pairs arising from random charge transfer greatly restricts the oriented electron delivery to active center. Here we show a defect engineered iron single atom photocatalyst (Fe<sub>1</sub>-N<sub>v</sub>/CN, single Fe atoms dispersed on carbon nitride with abundant nitrogen vacancies) for the activation of H<sub>2</sub>O<sub>2</sub> under visible light irradiation. Based on DFT calculations and transient absorption spectroscopy results, the engineered nitrogen vacancies serve as the electron trap sites, which can directionally drive the electrons to concentrate on Fe atoms. The formation of highly concentrated electrons density at Fe sites significantly improves the H<sub>2</sub>O<sub>2</sub> conversion efficiency. Therefore, the optimized single atom catalyst exhibiting a higher ciprofloxacin degradation activity, which was up to 18 times that of pristine CN.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"60 39","pages":"21261-21266"},"PeriodicalIF":16.1000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anie.202108937","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202108937","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 106

Abstract

The activity of heterogeneous photocatalytic H2O2 activation in Fenton-like processes is closely related to the local electron density of reaction centre atoms. However, the recombination of electron-hole pairs arising from random charge transfer greatly restricts the oriented electron delivery to active center. Here we show a defect engineered iron single atom photocatalyst (Fe1-Nv/CN, single Fe atoms dispersed on carbon nitride with abundant nitrogen vacancies) for the activation of H2O2 under visible light irradiation. Based on DFT calculations and transient absorption spectroscopy results, the engineered nitrogen vacancies serve as the electron trap sites, which can directionally drive the electrons to concentrate on Fe atoms. The formation of highly concentrated electrons density at Fe sites significantly improves the H2O2 conversion efficiency. Therefore, the optimized single atom catalyst exhibiting a higher ciprofloxacin degradation activity, which was up to 18 times that of pristine CN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入氮空位调控高效光芬顿工艺中铁单位点的局部电子密度
类芬顿过程中非均相光催化H2O2活化活性与反应中心原子的局部电子密度密切相关。然而,随机电荷转移引起的电子空穴对复合极大地限制了定向电子向活性中心的传递。在此,我们展示了一种缺陷工程铁单原子光催化剂(Fe1-Nv/CN,单个Fe原子分散在氮化碳上,具有丰富的氮空位)在可见光下活化H2O2。基于DFT计算和瞬态吸收光谱结果,设计的氮空位作为电子陷阱位,可以定向驱动电子向铁原子集中。在Fe位点形成高度集中的电子密度,显著提高了H2O2的转化效率。因此,优化后的单原子催化剂具有较高的环丙沙星降解活性,是原始CN的18倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1