Interactive Stratospheric Aerosol Microphysics-Chemistry Simulations of the 1991 Pinatubo Volcanic Aerosols With Newly Coupled Sectional Aerosol and Stratosphere-Troposphere Chemistry Modules in the NASA GEOS Chemistry-Climate Model (CCM)
Parker Case, Peter R. Colarco, Brian Toon, Valentina Aquila, Christoph A. Keller
{"title":"Interactive Stratospheric Aerosol Microphysics-Chemistry Simulations of the 1991 Pinatubo Volcanic Aerosols With Newly Coupled Sectional Aerosol and Stratosphere-Troposphere Chemistry Modules in the NASA GEOS Chemistry-Climate Model (CCM)","authors":"Parker Case, Peter R. Colarco, Brian Toon, Valentina Aquila, Christoph A. Keller","doi":"10.1029/2022MS003147","DOIUrl":null,"url":null,"abstract":"<p>We have coupled the GEOS-Chem tropospheric-stratospheric chemistry mechanism and the Community Aerosol and Radiation Model for Atmospheres (CARMA), a sectional aerosol microphysics module, within the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) in order to simulate the interactions between stratospheric chemistry and aerosol microphysics. We use observations of the 1991 Mount Pinatubo volcanic cloud to evaluate this new version of the GEOS CCM. The GEOS-Chem chemistry module is used to simulate the oxidation of sulfur dioxide (SO<sub>2</sub>) more realistically than assuming hydroxyl radical (OH) fields are constant, as OH concentrations in the plume decrease dramatically in the weeks following the eruption. CARMA simulates sulfate aerosols with dynamic microphysical and optical properties. The CARMA-calculated aerosol surface area is coupled to the chemistry module from GEOS-Chem for the calculation of heterogeneous chemistry. We use a set of observational and theoretical constraints for Pinatubo to evaluate the performance of this new version of the GEOS CCM. These simulations are specifically compared with satellite and in-situ observations and provide insights into the connections between the gas-phase chemistry and the aerosol microphysics of the early plume and how they impact the climatic and chemical changes following a large volcanic eruption. A second, smaller eruption is also included in these simulations, the 15 August 1991, eruption of Cerro Hudson in Chile, which we find essential in explaining the aerosol optical depth in the Southern Hemisphere in 1991.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003147","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We have coupled the GEOS-Chem tropospheric-stratospheric chemistry mechanism and the Community Aerosol and Radiation Model for Atmospheres (CARMA), a sectional aerosol microphysics module, within the NASA Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) in order to simulate the interactions between stratospheric chemistry and aerosol microphysics. We use observations of the 1991 Mount Pinatubo volcanic cloud to evaluate this new version of the GEOS CCM. The GEOS-Chem chemistry module is used to simulate the oxidation of sulfur dioxide (SO2) more realistically than assuming hydroxyl radical (OH) fields are constant, as OH concentrations in the plume decrease dramatically in the weeks following the eruption. CARMA simulates sulfate aerosols with dynamic microphysical and optical properties. The CARMA-calculated aerosol surface area is coupled to the chemistry module from GEOS-Chem for the calculation of heterogeneous chemistry. We use a set of observational and theoretical constraints for Pinatubo to evaluate the performance of this new version of the GEOS CCM. These simulations are specifically compared with satellite and in-situ observations and provide insights into the connections between the gas-phase chemistry and the aerosol microphysics of the early plume and how they impact the climatic and chemical changes following a large volcanic eruption. A second, smaller eruption is also included in these simulations, the 15 August 1991, eruption of Cerro Hudson in Chile, which we find essential in explaining the aerosol optical depth in the Southern Hemisphere in 1991.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.