How to analyze linguistic change using mixed models, Growth Curve Analysis and Generalized Additive Modeling

IF 2.1 0 LANGUAGE & LINGUISTICS Journal of Language Evolution Pub Date : 2016-01-01 DOI:10.1093/JOLE/LZV003
Bodo Winter, Martijn B. Wieling
{"title":"How to analyze linguistic change using mixed models, Growth Curve Analysis and Generalized Additive Modeling","authors":"Bodo Winter, Martijn B. Wieling","doi":"10.1093/JOLE/LZV003","DOIUrl":null,"url":null,"abstract":"When doing empirical studies in the field of language evolution, change over time is an inherent dimension. This tutorial introduces readers to mixed models, Growth Curve Analysis (GCA) and Generalized Additive Models (GAMs). These approaches are ideal for analyzing nonlinear change over time where there are nested dependencies, such as time points within dyad (in repeated interaction experiments) or time points within chain (in iterated learning experiments). In addition, the tutorial gives recommendations for choices about model fitting. Annotated scripts in the online [Supplementary Data][1] provide the reader with R code to serve as a springboard for the reader’s own analyses. [1]: http://jole.oxfordjournals.org/lookup/suppl/doi:10.1093/jole/lzv003/-/DC1","PeriodicalId":37118,"journal":{"name":"Journal of Language Evolution","volume":"1 1","pages":"7-18"},"PeriodicalIF":2.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/JOLE/LZV003","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Language Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JOLE/LZV003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 104

Abstract

When doing empirical studies in the field of language evolution, change over time is an inherent dimension. This tutorial introduces readers to mixed models, Growth Curve Analysis (GCA) and Generalized Additive Models (GAMs). These approaches are ideal for analyzing nonlinear change over time where there are nested dependencies, such as time points within dyad (in repeated interaction experiments) or time points within chain (in iterated learning experiments). In addition, the tutorial gives recommendations for choices about model fitting. Annotated scripts in the online [Supplementary Data][1] provide the reader with R code to serve as a springboard for the reader’s own analyses. [1]: http://jole.oxfordjournals.org/lookup/suppl/doi:10.1093/jole/lzv003/-/DC1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何使用混合模型、增长曲线分析和广义加性建模来分析语言变化
在进行语言进化领域的实证研究时,随时间的变化是一个固有的维度。本教程向读者介绍混合模型,增长曲线分析(GCA)和广义加性模型(GAMs)。这些方法非常适合分析随时间的非线性变化,其中存在嵌套的依赖关系,例如dyad中的时间点(在重复的交互实验中)或chain中的时间点(在迭代的学习实验中)。此外,本教程还提供了关于模型拟合选择的建议。在线[补充数据][1]中的注释脚本为读者提供了R代码,作为读者自己分析的跳板。[1]: http://jole.oxfordjournals.org/lookup/suppl/doi: 10.1093 /乔/ lzv003 /——/ DC1式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Language Evolution
Journal of Language Evolution Social Sciences-Linguistics and Language
CiteScore
4.50
自引率
7.70%
发文量
8
期刊最新文献
Derivational morphology and suffixing bias on linguistic and nonlinguistic material Bayesian phylogenetic analysis of pitch-accent systems based on accentual class merger: a new method applied to Japanese dialects The evolution of evolutionary linguistics Evolutionary pathways of complexity in gender systems Evolution of Pantomime in Dyadic Interaction. A Motion Capture Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1