Modelling blood flow in coronary arteries with junctions

S. Corney, P. Johnston, D. Kilpatrick
{"title":"Modelling blood flow in coronary arteries with junctions","authors":"S. Corney, P. Johnston, D. Kilpatrick","doi":"10.1109/CIC.2002.1166784","DOIUrl":null,"url":null,"abstract":"Numerical modelling of the coronary tree is well established. Solutions of the Navier-Stokes equations can produce wall shear stress distributions which can be used to correlate the position of shear stress distribution with coronary artery disease. We have previously demonstrated a technique for reconstructing a single branch of the coronary tree. The introduction of junctions into the model allows for accurate reconstruction of potentially the entire arterial tree. However the introduction of a realistic junction has proven to be difficult. A four section method for branching has been adopted, utilising three tubular segments and a small junction section as the join. This allows for automatic generation of the majority of the artery (the tubes), and a semi-automated procedure concentrating specifically on the junction. A structured mesh is used for the tubes, allowing for easy generation and improved computation time, whilst an unstructured mesh is used to accurately model the irregular shape of the junction. The four section method allows for easy insertion of more branches, depending on the level of detail required. Another advantage is that as time evolves, inducing conformational changes throughout the cardiac cycle, the tubes can be regenerated, whilst the junction needs only slight modification. Marked changes are induced in wall shear stress by either adding extra junctions to an arterial tree, or altering the shape of major branches.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166784","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerical modelling of the coronary tree is well established. Solutions of the Navier-Stokes equations can produce wall shear stress distributions which can be used to correlate the position of shear stress distribution with coronary artery disease. We have previously demonstrated a technique for reconstructing a single branch of the coronary tree. The introduction of junctions into the model allows for accurate reconstruction of potentially the entire arterial tree. However the introduction of a realistic junction has proven to be difficult. A four section method for branching has been adopted, utilising three tubular segments and a small junction section as the join. This allows for automatic generation of the majority of the artery (the tubes), and a semi-automated procedure concentrating specifically on the junction. A structured mesh is used for the tubes, allowing for easy generation and improved computation time, whilst an unstructured mesh is used to accurately model the irregular shape of the junction. The four section method allows for easy insertion of more branches, depending on the level of detail required. Another advantage is that as time evolves, inducing conformational changes throughout the cardiac cycle, the tubes can be regenerated, whilst the junction needs only slight modification. Marked changes are induced in wall shear stress by either adding extra junctions to an arterial tree, or altering the shape of major branches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冠状动脉连接血流模型
冠状树的数值模拟已经建立。Navier-Stokes方程的解可以得到壁面剪应力分布,可以用来将剪应力分布的位置与冠状动脉疾病联系起来。我们之前已经展示了一种重建冠状动脉树单个分支的技术。在模型中引入连接可以精确地重建整个动脉树。然而,事实证明,引入一个现实的连接点是困难的。分支采用了四段方法,利用三个管状段和一个小连接段作为连接。这允许自动生成大多数动脉(管),以及专门集中在连接处的半自动程序。结构网格用于管,允许易于生成和改进计算时间,而非结构网格用于准确地模拟结的不规则形状。根据所需的详细程度,四段方法允许轻松插入更多分支。另一个优点是,随着时间的推移,诱导整个心脏周期的构象变化,导管可以再生,而连接只需要轻微的修改。通过在动脉树上增加额外的连接点或改变主要分支的形状,可以引起壁面剪切应力的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-Induced Spatial Dispersion of Repolarization and the Development of VF in an Animal Model of Sudden Death. An Anisotropic Fluid-Solid Model of the Mouse Heart. Dynamic Cardiovagal Response to Motion Sickness: A Point-Process Heart Rate Variability Study. The Effect of Signal Quality on Six Cardiac Output Estimators. Predicting Acute Hypotensive Episodes: The 10th Annual PhysioNet/Computers in Cardiology Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1