Spectral analysis of multiunit action potential trains of muscle sympathetic nerve activity in humans

R. Brychtal, W. Charoensuk, L. Bernardi, R. Furlan, R. Shiavi, A. Diedrich
{"title":"Spectral analysis of multiunit action potential trains of muscle sympathetic nerve activity in humans","authors":"R. Brychtal, W. Charoensuk, L. Bernardi, R. Furlan, R. Shiavi, A. Diedrich","doi":"10.1109/CIC.2002.1166808","DOIUrl":null,"url":null,"abstract":"The application of conventional signal processing methods used to obtain an integrated signal from muscle sympathetic nerve activity (MSNA) reduces the amount of information and may confound the spectral characteristics. We present a novel alternative method of processing the raw MSNA signal using a wavelet transform denoising technique that enables detection of individual action potentials and facilitates spectral analysis. A spike density function (SDF) is generated from the denoised signal by replacing the detected action potentials with delta functions and convolving with a 3 Hz Gaussian filter. This method was validated using data from a sinusoidal neck suction (NS) experiment in humans. The results of the analysis indicate that the oscillations of sympathetic nerve firings closely followed the NS frequency. In conclusion, the SDF representation allows for a novel and insightful analysis of spectral components of action potential trains in raw MSNA.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"457-460"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166808","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The application of conventional signal processing methods used to obtain an integrated signal from muscle sympathetic nerve activity (MSNA) reduces the amount of information and may confound the spectral characteristics. We present a novel alternative method of processing the raw MSNA signal using a wavelet transform denoising technique that enables detection of individual action potentials and facilitates spectral analysis. A spike density function (SDF) is generated from the denoised signal by replacing the detected action potentials with delta functions and convolving with a 3 Hz Gaussian filter. This method was validated using data from a sinusoidal neck suction (NS) experiment in humans. The results of the analysis indicate that the oscillations of sympathetic nerve firings closely followed the NS frequency. In conclusion, the SDF representation allows for a novel and insightful analysis of spectral components of action potential trains in raw MSNA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体肌肉交感神经活动多单元动作电位序列的频谱分析
传统的信号处理方法用于从肌肉交感神经活动(MSNA)中获得综合信号,减少了信息量,并可能混淆频谱特征。我们提出了一种新的替代方法来处理原始MSNA信号,使用小波变换去噪技术,可以检测单个动作电位并促进频谱分析。用delta函数代替检测到的动作电位,用3hz高斯滤波器卷积,得到去噪信号的峰值密度函数(SDF)。该方法通过人体正弦颈部吸痰(NS)实验数据得到验证。分析结果表明,交感神经放电振荡与NS频率密切相关。总之,SDF表示允许对原始MSNA中动作电位序列的频谱成分进行新颖而深刻的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-Induced Spatial Dispersion of Repolarization and the Development of VF in an Animal Model of Sudden Death. An Anisotropic Fluid-Solid Model of the Mouse Heart. Dynamic Cardiovagal Response to Motion Sickness: A Point-Process Heart Rate Variability Study. The Effect of Signal Quality on Six Cardiac Output Estimators. Predicting Acute Hypotensive Episodes: The 10th Annual PhysioNet/Computers in Cardiology Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1