{"title":"Towards Knowledge Enhanced Language Model for Machine Reading Comprehension","authors":"Peizhu Gong, Jin Liu, Yihe Yang, Huihua He","doi":"10.1109/ACCESS.2020.3044308","DOIUrl":null,"url":null,"abstract":"Machine reading comprehension is a crucial and challenging task in natural language processing (NLP). Recently, knowledge graph (KG) embedding has gained massive attention as it can effectively provide side information for downstream tasks. However, most previous knowledge-based models do not take into account the structural characteristics of the triples in KGs, and only convert them into vector representations for direct accumulation, leading to deficiencies in knowledge extraction and knowledge fusion. In order to alleviate this problem, we propose a novel deep model KCF-NET, which incorporates knowledge graph representations with context as the basis for predicting answers by leveraging capsule network to encode the intrinsic spatial relationship in triples of KG. In KCF-NET, we fine-tune BERT, a highly performance contextual language representation model, to capture complex linguistic phenomena. Besides, a novel fusion structure based on multi-head attention mechanism is designed to balance the weight of knowledge and context. To evaluate the knowledge expression and reading comprehension ability of our model, we conducted extensive experiments on multiple public datasets such as WN11, FB13, SemEval-2010 Task 8 and SQuAD. Experimental results show that KCF-NET achieves state-of-the-art results in both link prediction and MRC tasks with negligible parameter increase compared to BERT-Base, and gets competitive results in triple classification task with significantly reduced model size.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"8 1","pages":"224837-224851"},"PeriodicalIF":3.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACCESS.2020.3044308","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/ACCESS.2020.3044308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 6
Abstract
Machine reading comprehension is a crucial and challenging task in natural language processing (NLP). Recently, knowledge graph (KG) embedding has gained massive attention as it can effectively provide side information for downstream tasks. However, most previous knowledge-based models do not take into account the structural characteristics of the triples in KGs, and only convert them into vector representations for direct accumulation, leading to deficiencies in knowledge extraction and knowledge fusion. In order to alleviate this problem, we propose a novel deep model KCF-NET, which incorporates knowledge graph representations with context as the basis for predicting answers by leveraging capsule network to encode the intrinsic spatial relationship in triples of KG. In KCF-NET, we fine-tune BERT, a highly performance contextual language representation model, to capture complex linguistic phenomena. Besides, a novel fusion structure based on multi-head attention mechanism is designed to balance the weight of knowledge and context. To evaluate the knowledge expression and reading comprehension ability of our model, we conducted extensive experiments on multiple public datasets such as WN11, FB13, SemEval-2010 Task 8 and SQuAD. Experimental results show that KCF-NET achieves state-of-the-art results in both link prediction and MRC tasks with negligible parameter increase compared to BERT-Base, and gets competitive results in triple classification task with significantly reduced model size.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.