{"title":"Spatiotemporal Patterns of Land Surface Temperature Change in the Tibetan Plateau Based on MODIS/Terra Daily Product From 2000 to 2018","authors":"Mengjiao Yang, Wei Zhao, Qiqi Zhan, Dong-hong Xiong","doi":"10.1109/JSTARS.2021.3089851","DOIUrl":null,"url":null,"abstract":"Under the background of climate change, the Tibetan Plateau presents high spatial and temporal variability in land surface temperature (LST). To understand the spatiotemporal patterns of LST change, this article conducted a spatiotemporal analysis using the Mann–Kendall trend analysis method with time series of mean annual surface temperature extracted from the moderate resolution imaging spectroradiometer/Terra daily LST product from 2000 to 2018. The analysis indicated that both daytime and nighttime MASTs show an obvious warming trend with the average rates of 0.028 K/year and 0.069 K/year, and the nighttime variation has larger spatial coverage. Areas ranging from 4500 to 5000 m exhibited the strongest warming effect. The geodetector method was applied to detect the impacts from seven factors, including elevation, land cover type, latitude, normalized difference vegetation index (NDVI), precipitation, air temperature, and solar radiation on the spatial distribution of LST. The controlling effects of these factors were generally stronger in the nighttime than those in the daytime, and elevation was the most important factor with the contribution scores of 27.12% and 62.98% in the daytime and nighttime, respectively. In addition, the analysis revealed that the temporal changes of LST were mainly caused by surface properties (vegetation, snow cover, and water surface area) changes, radiant flux changes induced by cloud amount changes, and climate warming. In general, this article provides important insights into the spatiotemporal dynamics of LST in the TP since 2000 and helps to reveal the impact of climate change on ecoenvironmental conservation.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"14 1","pages":"6501-6514"},"PeriodicalIF":5.3000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSTARS.2021.3089851","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JSTARS.2021.3089851","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 18
Abstract
Under the background of climate change, the Tibetan Plateau presents high spatial and temporal variability in land surface temperature (LST). To understand the spatiotemporal patterns of LST change, this article conducted a spatiotemporal analysis using the Mann–Kendall trend analysis method with time series of mean annual surface temperature extracted from the moderate resolution imaging spectroradiometer/Terra daily LST product from 2000 to 2018. The analysis indicated that both daytime and nighttime MASTs show an obvious warming trend with the average rates of 0.028 K/year and 0.069 K/year, and the nighttime variation has larger spatial coverage. Areas ranging from 4500 to 5000 m exhibited the strongest warming effect. The geodetector method was applied to detect the impacts from seven factors, including elevation, land cover type, latitude, normalized difference vegetation index (NDVI), precipitation, air temperature, and solar radiation on the spatial distribution of LST. The controlling effects of these factors were generally stronger in the nighttime than those in the daytime, and elevation was the most important factor with the contribution scores of 27.12% and 62.98% in the daytime and nighttime, respectively. In addition, the analysis revealed that the temporal changes of LST were mainly caused by surface properties (vegetation, snow cover, and water surface area) changes, radiant flux changes induced by cloud amount changes, and climate warming. In general, this article provides important insights into the spatiotemporal dynamics of LST in the TP since 2000 and helps to reveal the impact of climate change on ecoenvironmental conservation.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.