Han-Hao Sun, Zheng Liu, Guizhi Wang, Weimin Lian, Jun Ma
{"title":"Intelligent Analysis of Medical Big Data Based on Deep Learning","authors":"Han-Hao Sun, Zheng Liu, Guizhi Wang, Weimin Lian, Jun Ma","doi":"10.1109/ACCESS.2019.2942937","DOIUrl":null,"url":null,"abstract":"With the wide application of computer technology, medical health data has also increased dramatically, and data-driven medical big data analysis methods have emerged as the times require, providing assistance for intelligent identification of medical health. However, due to the mixed medical big data format, many incomplete records, and a lot of noise, it is still difficult to analyze medical big data. Traditional machine learning methods can’t effectively mine the rich information contained in medical big data, while deep learning builds a hierarchical model by simulating the human brain. It has powerful automatic feature extraction, complex model construction and efficient feature expression, and more important. It is a deep learning method that extracts features from the bottom to the top level from the original medical image data. Therefore, this paper constructs a data analysis model based on deep learning for medical images and transcripts, and is used for intelligent identification and diagnosis of diseases. The model uses massive medical big data to select and optimize model parameters, and automatically learns the pathological analysis process of doctors or medical researchers through the model, and finally intelligently conducts disease judgment and effective decision based on the analysis results of medical big data. The experimental results show that the method can analyze the medical big data, and can realize the early diagnosis of the disease. At the same time, it can analyze the physical health status according to the patient’s physical examination records and predict the risk of a certain disease in the future. Greatly reduce the work pressure of doctors or medical researchers and improve their work efficiency.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"7 1","pages":"142022-142037"},"PeriodicalIF":3.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACCESS.2019.2942937","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/ACCESS.2019.2942937","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 25
Abstract
With the wide application of computer technology, medical health data has also increased dramatically, and data-driven medical big data analysis methods have emerged as the times require, providing assistance for intelligent identification of medical health. However, due to the mixed medical big data format, many incomplete records, and a lot of noise, it is still difficult to analyze medical big data. Traditional machine learning methods can’t effectively mine the rich information contained in medical big data, while deep learning builds a hierarchical model by simulating the human brain. It has powerful automatic feature extraction, complex model construction and efficient feature expression, and more important. It is a deep learning method that extracts features from the bottom to the top level from the original medical image data. Therefore, this paper constructs a data analysis model based on deep learning for medical images and transcripts, and is used for intelligent identification and diagnosis of diseases. The model uses massive medical big data to select and optimize model parameters, and automatically learns the pathological analysis process of doctors or medical researchers through the model, and finally intelligently conducts disease judgment and effective decision based on the analysis results of medical big data. The experimental results show that the method can analyze the medical big data, and can realize the early diagnosis of the disease. At the same time, it can analyze the physical health status according to the patient’s physical examination records and predict the risk of a certain disease in the future. Greatly reduce the work pressure of doctors or medical researchers and improve their work efficiency.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.