Long Short-Term Memory-Assisted Mixed Vehicle Platoon Control Strategy Considering Message Recovery Under Nonideal Information Environment

IF 4.3 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Intelligent Transportation Systems Magazine Pub Date : 2023-11-01 DOI:10.1109/mits.2023.3264028
Hang Zhao, Dihua Sun, Min Zhao, Baohui Li, Changchang He, Xinhai Chen
{"title":"Long Short-Term Memory-Assisted Mixed Vehicle Platoon Control Strategy Considering Message Recovery Under Nonideal Information Environment","authors":"Hang Zhao, Dihua Sun, Min Zhao, Baohui Li, Changchang He, Xinhai Chen","doi":"10.1109/mits.2023.3264028","DOIUrl":null,"url":null,"abstract":"Typical communication and detection issues in a nonideal information environment, such as sensing failure, communication and sensing delay, and packet loss, further aggravate the adverse impacts of human-driven vehicle (HV) uncertainty on a mixed vehicle platoon. To guarantee the performance of the mixed vehicle platoon featuring HVs and connected and automated vehicles under the nonideal information environment, this article proposes a platoon control strategy integrating a combined longitudinal and lateral control and message recovery. Specifically, by building the dataset associated with HV behaviors, a long short-term memory (LSTM) predictor is established to recover the problematic HV messages (i.e., position, velocity, and heading) caused by the nonideal information environment. Furthermore, based on the boundary of the HV states, an evaluation and correction (EC) method is presented to suppress the adverse impacts of prediction failures. Then, a combined longitudinal and lateral controller cooperating with the LSTM predictor and EC method is developed to enhance the stability and safety of the mixed vehicle platoon under the nonideal information environment. In a theoretical analysis, the relatedness between the asymptotic stability and string stability of the platoon and predictor accuracy is strictly proved. Finally, comparative experiments verify the effectiveness of the proposed control strategy by employing driver-in-the-loop simulations.","PeriodicalId":48826,"journal":{"name":"IEEE Intelligent Transportation Systems Magazine","volume":"1 1","pages":"109-130"},"PeriodicalIF":4.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Transportation Systems Magazine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/mits.2023.3264028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Typical communication and detection issues in a nonideal information environment, such as sensing failure, communication and sensing delay, and packet loss, further aggravate the adverse impacts of human-driven vehicle (HV) uncertainty on a mixed vehicle platoon. To guarantee the performance of the mixed vehicle platoon featuring HVs and connected and automated vehicles under the nonideal information environment, this article proposes a platoon control strategy integrating a combined longitudinal and lateral control and message recovery. Specifically, by building the dataset associated with HV behaviors, a long short-term memory (LSTM) predictor is established to recover the problematic HV messages (i.e., position, velocity, and heading) caused by the nonideal information environment. Furthermore, based on the boundary of the HV states, an evaluation and correction (EC) method is presented to suppress the adverse impacts of prediction failures. Then, a combined longitudinal and lateral controller cooperating with the LSTM predictor and EC method is developed to enhance the stability and safety of the mixed vehicle platoon under the nonideal information environment. In a theoretical analysis, the relatedness between the asymptotic stability and string stability of the platoon and predictor accuracy is strictly proved. Finally, comparative experiments verify the effectiveness of the proposed control strategy by employing driver-in-the-loop simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非理想信息环境下考虑消息恢复的长短期记忆辅助混合车辆排控策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Intelligent Transportation Systems Magazine
IEEE Intelligent Transportation Systems Magazine ENGINEERING, ELECTRICAL & ELECTRONIC-TRANSPORTATION SCIENCE & TECHNOLOGY
CiteScore
8.00
自引率
8.30%
发文量
147
期刊介绍: The IEEE Intelligent Transportation Systems Magazine (ITSM) publishes peer-reviewed articles that provide innovative research ideas and application results, report significant application case studies, and raise awareness of pressing research and application challenges in all areas of intelligent transportation systems. In contrast to the highly academic publication of the IEEE Transactions on Intelligent Transportation Systems, the ITS Magazine focuses on providing needed information to all members of IEEE ITS society, serving as a dissemination vehicle for ITS Society members and the others to learn the state of the art development and progress on ITS research and applications. High quality tutorials, surveys, successful implementations, technology reviews, lessons learned, policy and societal impacts, and ITS educational issues are published as well. The ITS Magazine also serves as an ideal media communication vehicle between the governing body of ITS society and its membership and promotes ITS community development and growth.
期刊最新文献
En Route Congestion Prediction Method for Air Route Network Based on Spatiotemporal Graph Convolution Network and Attention Coordinated Operation Strategy Design for Virtually Coupled Train Set: A Multiagent Reinforcement Learning Approach Distributed Automation System Lab at University of Naples Federico II [Its Research Lab] Calendar [Calendar] IEEE APP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1