How to Use the IEEEtran LATEX Class

IF 13.8 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Selected Areas in Communications Pub Date : 2019-07-09 DOI:10.1109/jsac.2019.2927066
P. Bellavista, Antonio Corradi, L. Foschini, S. Luciano, M. Solimando
{"title":"How to Use the IEEEtran LATEX Class","authors":"P. Bellavista, Antonio Corradi, L. Foschini, S. Luciano, M. Solimando","doi":"10.1109/jsac.2019.2927066","DOIUrl":null,"url":null,"abstract":"Many IT companies are embracing the new softwarization paradigm through the adoption of new architecture models, such as software-defined network and network function virtualization, primarily to limit the costs of maintaining and deploying their network infrastructures, by giving the possibility to service/application providers to reconfigure and programmatically perform actions on the network. Accordingly, the dynamic management of the data center networks requires complex operations to ensure high availability and continuous reliability in order to guarantee full functionality of the virtualized resources. In this context, simulator-based approaches are helpful for planning and evaluating the deployment of the cloud data center networking, but existing cloud simulators have several limitations: they have too high overhead for wide-scale data center networks, complex configuration, and too abstract deployment models. For these motivations, we propose DCNs-2, a novel extension for the Ns-2 simulator, as a valid solution to efficiently simulate a cloud network infrastructure, with all the involved entities, such as switches, physical/virtual machines, and racks. The proposed solution not only makes configuration easier, but through extensive tests, we show that its execution overhead is limited to less than 130 MB of memory and the execution time is acceptable even for very wide-scale and complex deployment environments.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"1 1","pages":"1808-1819"},"PeriodicalIF":13.8000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/jsac.2019.2927066","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/jsac.2019.2927066","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Many IT companies are embracing the new softwarization paradigm through the adoption of new architecture models, such as software-defined network and network function virtualization, primarily to limit the costs of maintaining and deploying their network infrastructures, by giving the possibility to service/application providers to reconfigure and programmatically perform actions on the network. Accordingly, the dynamic management of the data center networks requires complex operations to ensure high availability and continuous reliability in order to guarantee full functionality of the virtualized resources. In this context, simulator-based approaches are helpful for planning and evaluating the deployment of the cloud data center networking, but existing cloud simulators have several limitations: they have too high overhead for wide-scale data center networks, complex configuration, and too abstract deployment models. For these motivations, we propose DCNs-2, a novel extension for the Ns-2 simulator, as a valid solution to efficiently simulate a cloud network infrastructure, with all the involved entities, such as switches, physical/virtual machines, and racks. The proposed solution not only makes configuration easier, but through extensive tests, we show that its execution overhead is limited to less than 130 MB of memory and the execution time is acceptable even for very wide-scale and complex deployment environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何使用ieetran LATEX类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
30.00
自引率
4.30%
发文量
234
审稿时长
6 months
期刊介绍: The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference. The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.
期刊最新文献
A Robust Image Semantic Communication System with Multi-Scale Vision Transformer AutoSRv6: Configuration Synthesis for Segment Routing over IPv6 6D Movable Antenna Enhanced Wireless Network Via Discrete Position and Rotation Optimization Dynamic Hybrid Beamforming Designs for ELAA Near-Field Communications Beamforming Design for Semantic-Bit Coexisting Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1