A Focused review on the pathophysiology of post-inflammatory hyperpigmentation

IF 3.9 3区 医学 Q2 CELL BIOLOGY Pigment Cell & Melanoma Research Pub Date : 2022-03-20 DOI:10.1111/pcmr.13038
Jalal Maghfour, Jadesola Olayinka, Iltefat H. Hamzavi, Tasneem F. Mohammad
{"title":"A Focused review on the pathophysiology of post-inflammatory hyperpigmentation","authors":"Jalal Maghfour,&nbsp;Jadesola Olayinka,&nbsp;Iltefat H. Hamzavi,&nbsp;Tasneem F. Mohammad","doi":"10.1111/pcmr.13038","DOIUrl":null,"url":null,"abstract":"<p>Post-inflammatory hyperpigmentation (PIH) is one of the most common disorders of acquired hyperpigmentation. It often develops following cutaneous inflammation and is triggered by various stimuli, from inflammatory and autoimmune conditions to iatrogenic causes and mechanical injuries. While it is well established that an increase in melanin production and distribution within the epidermis and dermis is a hallmark feature of this condition, the exact mechanisms underlying PIH are not completely understood. This article aims to review the current evidence on the pathophysiology of PIH as the cellular and molecular mechanism of PIH represents a promising avenue for the development of novel, targeted therapies.</p>","PeriodicalId":219,"journal":{"name":"Pigment Cell & Melanoma Research","volume":"35 3","pages":"320-327"},"PeriodicalIF":3.9000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pcmr.13038","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment Cell & Melanoma Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pcmr.13038","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Post-inflammatory hyperpigmentation (PIH) is one of the most common disorders of acquired hyperpigmentation. It often develops following cutaneous inflammation and is triggered by various stimuli, from inflammatory and autoimmune conditions to iatrogenic causes and mechanical injuries. While it is well established that an increase in melanin production and distribution within the epidermis and dermis is a hallmark feature of this condition, the exact mechanisms underlying PIH are not completely understood. This article aims to review the current evidence on the pathophysiology of PIH as the cellular and molecular mechanism of PIH represents a promising avenue for the development of novel, targeted therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎症后色素沉着的病理生理研究综述
炎症后色素沉着症(PIH)是获得性色素沉着症最常见的疾病之一。它通常发生在皮肤炎症之后,并由各种刺激触发,从炎症和自身免疫性疾病到医源性原因和机械损伤。虽然已经确定黑色素在表皮和真皮层内产生和分布的增加是这种疾病的标志特征,但PIH的确切机制尚不完全清楚。本文旨在回顾目前关于PIH病理生理的证据,因为PIH的细胞和分子机制代表了开发新型靶向治疗的有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pigment Cell & Melanoma Research
Pigment Cell & Melanoma Research 医学-皮肤病学
CiteScore
8.90
自引率
2.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Pigment Cell & Melanoma Researchpublishes manuscripts on all aspects of pigment cells including development, cell and molecular biology, genetics, diseases of pigment cells including melanoma. Papers that provide insights into the causes and progression of melanoma including the process of metastasis and invasion, proliferation, senescence, apoptosis or gene regulation are especially welcome, as are papers that use the melanocyte system to answer questions of general biological relevance. Papers that are purely descriptive or make only minor advances to our knowledge of pigment cells or melanoma in particular are not suitable for this journal. Keywords Pigment Cell & Melanoma Research, cell biology, melatonin, biochemistry, chemistry, comparative biology, dermatology, developmental biology, genetics, hormones, intracellular signalling, melanoma, molecular biology, ocular and extracutaneous melanin, pharmacology, photobiology, physics, pigmentary disorders
期刊最新文献
The Lipid Droplet Protein DHRS3 Is a Regulator of Melanoma Cell State. UVA Irradiation Promotes Melanoma Cell Proliferation Mediated by OPN3 Independently of ROS Production. Issue Information Bay 11-7082, an NF-κB Inhibitor, Prevents Post-Inflammatory Hyperpigmentation Through Inhibition of Inflammation and Melanogenesis. Low-Dose Baricitinib Plus Narrow-Band Ultraviolet B for the Treatment of Progressive Non-Segmental Vitiligo: A Prospective, Controlled, Open-Label Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1