An improved method of speckle filtering in SAR image based on structure detection

Jia Cheng-li, Gao Gui, Kuang Gang-yao, Yu Wen-xian
{"title":"An improved method of speckle filtering in SAR image based on structure detection","authors":"Jia Cheng-li, Gao Gui, Kuang Gang-yao, Yu Wen-xian","doi":"10.1109/RISSP.2003.1285698","DOIUrl":null,"url":null,"abstract":"This paper presents an improved method of speckle filtering in SAR image based on structure detection to solve some problems of the Lopes' structure detection and statistical adaptive speckle filtering. The method uses the probability iterative to segment SAR image and detect the edges, then combines the strong scatterer detection result to label the SAR image as structure area and non-structure area. In non-structure area, the Lee filter is used, and in the structure area, the intensity of the image is preserved. Experimental results with RADARSAT images verify the practicability and the advantage of the improved method.","PeriodicalId":66490,"journal":{"name":"计算机仿真","volume":"2 1","pages":"852-857 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RISSP.2003.1285698","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机仿真","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/RISSP.2003.1285698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an improved method of speckle filtering in SAR image based on structure detection to solve some problems of the Lopes' structure detection and statistical adaptive speckle filtering. The method uses the probability iterative to segment SAR image and detect the edges, then combines the strong scatterer detection result to label the SAR image as structure area and non-structure area. In non-structure area, the Lee filter is used, and in the structure area, the intensity of the image is preserved. Experimental results with RADARSAT images verify the practicability and the advantage of the improved method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的基于结构检测的SAR图像散斑滤波方法
针对Lopes结构检测和统计自适应散斑滤波存在的问题,提出了一种改进的基于结构检测的SAR图像散斑滤波方法。该方法利用概率迭代对SAR图像进行分割和边缘检测,然后结合强散射体检测结果将SAR图像标记为结构区和非结构区。在非结构区域,采用Lee滤波器,在结构区域,保留图像的强度。RADARSAT图像的实验结果验证了改进方法的实用性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
22147
期刊介绍:
期刊最新文献
Compensation Sliding Cross Coupling Control Research of Cartesian Coordinate Robot Load System Modeling of Ultra-Supercritical Coal-Fired Power Unit Based on Improved Particle Swarm Optimization Small Fault Detection Based on Cumulative Sum of Neighbor Statistic Research on Combat Simulation Body of Knowledge Gas-liquid Two-phase Flow Pattern Recognition Method Based on Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1