Maximizing Social Influence With Minimum Information Alteration

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2023-07-11 DOI:10.1109/TETC.2023.3292384
Guan Wang;Weihua Li;Quan Bai;Edmund M-K Lai
{"title":"Maximizing Social Influence With Minimum Information Alteration","authors":"Guan Wang;Weihua Li;Quan Bai;Edmund M-K Lai","doi":"10.1109/TETC.2023.3292384","DOIUrl":null,"url":null,"abstract":"With the rapid advancement of the Internet and social platforms, how to maximize the influence across popular online social networks has attracted great attention from both researchers and practitioners. Almost all the existing influence diffusion models assume that influence remains constant in the process of information spreading. However, in the real world, people tend to alternate information by attaching opinions or modifying the contents before spreading it. Namely, the meaning and idea of a message normally mutate in the process of influence diffusion. In this article, we investigate how to maximize the influence in online social platforms with a key consideration of suppressing the information alteration in the diffusion cascading process. We leverage deep learning models and knowledge graphs to present users’ personalised behaviours, i.e., actions after receiving a message. Furthermore, we investigate the information alteration in the process of influence diffusion. A novel seed selection algorithm is proposed to maximize the social influence without causing significant information alteration. Experimental results explicitly show the rationale of the proposed user behaviours deep learning model architecture and demonstrate the novel seeding algorithm's outstanding performance in both maximizing influence and retaining the influence originality.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 2","pages":"419-431"},"PeriodicalIF":5.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10179264/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of the Internet and social platforms, how to maximize the influence across popular online social networks has attracted great attention from both researchers and practitioners. Almost all the existing influence diffusion models assume that influence remains constant in the process of information spreading. However, in the real world, people tend to alternate information by attaching opinions or modifying the contents before spreading it. Namely, the meaning and idea of a message normally mutate in the process of influence diffusion. In this article, we investigate how to maximize the influence in online social platforms with a key consideration of suppressing the information alteration in the diffusion cascading process. We leverage deep learning models and knowledge graphs to present users’ personalised behaviours, i.e., actions after receiving a message. Furthermore, we investigate the information alteration in the process of influence diffusion. A novel seed selection algorithm is proposed to maximize the social influence without causing significant information alteration. Experimental results explicitly show the rationale of the proposed user behaviours deep learning model architecture and demonstrate the novel seeding algorithm's outstanding performance in both maximizing influence and retaining the influence originality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以最小的信息改动最大化社会影响力
随着互联网和社交平台的快速发展,如何在流行的在线社交网络中最大限度地扩大影响力引起了研究人员和从业人员的极大关注。几乎所有现有的影响力扩散模型都假设影响力在信息传播过程中保持不变。然而,在现实世界中,人们在传播信息之前往往会通过附加观点或修改内容来交替使用信息。也就是说,信息的含义和思想通常会在影响力扩散过程中发生变化。在本文中,我们研究了如何在网络社交平台中实现影响力最大化,其中的一个关键考虑因素是抑制扩散级联过程中的信息篡改。我们利用深度学习模型和知识图谱来呈现用户的个性化行为,即收到信息后的行动。此外,我们还研究了影响扩散过程中的信息改变。我们提出了一种新颖的种子选择算法,以在不造成重大信息改变的情况下最大化社会影响力。实验结果明确显示了所提出的用户行为深度学习模型架构的合理性,并证明了新型种子算法在最大化影响力和保留影响力原创性方面的出色表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1