Marco Di Renzo;Dario De Leonardis;Fabio Graziosi;Harald Haas
{"title":"Space Shift Keying (SSK—) MIMO with Practical Channel Estimates","authors":"Marco Di Renzo;Dario De Leonardis;Fabio Graziosi;Harald Haas","doi":"10.1109/TCOMM.2012.021712.100778","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of space modulation for Multiple-Input-Multiple-Output (MIMO) wireless systems with imperfect channel knowledge at the receiver. We focus our attention on two transmission technologies, which are the building blocks of space modulation: i) Space Shift Keying (SSK) modulation; and ii) Time-Orthogonal-Signal-Design (TOSD-) SSK modulation, which is an improved version of SSK modulation providing transmit-diversity. We develop a single-integral closed-form analytical framework to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations. The framework exploits the theory of quadratic-forms in conditional complex Gaussian Random Variables (RVs) along with the Gil-Pelaez inversion theorem. The analytical model is very general and can be used for arbitrary transmit- and receive-antennas, fading distributions, fading spatial correlations, and training pilots. The analytical derivation is substantiated through Monte Carlo simulations, and it is shown, over independent and identically distributed (i.i.d.) Rayleigh fading channels, that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSD-SSK modulation is more robust to channel estimation errors than the Alamouti scheme. Furthermore, it is pointed out that only few training pilots are needed to get reliable enough channel estimates for data detection, and that transmit- and receive-diversity of SSK and TOSD-SSK modulations are preserved even with imperfect channel knowledge.","PeriodicalId":13041,"journal":{"name":"IEEE Transactions on Communications","volume":"60 4","pages":"998-1012"},"PeriodicalIF":7.2000,"publicationDate":"2012-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCOMM.2012.021712.100778","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/6155697/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 99
Abstract
In this paper, we study the performance of space modulation for Multiple-Input-Multiple-Output (MIMO) wireless systems with imperfect channel knowledge at the receiver. We focus our attention on two transmission technologies, which are the building blocks of space modulation: i) Space Shift Keying (SSK) modulation; and ii) Time-Orthogonal-Signal-Design (TOSD-) SSK modulation, which is an improved version of SSK modulation providing transmit-diversity. We develop a single-integral closed-form analytical framework to compute the Average Bit Error Probability (ABEP) of a mismatched detector for both SSK and TOSD-SSK modulations. The framework exploits the theory of quadratic-forms in conditional complex Gaussian Random Variables (RVs) along with the Gil-Pelaez inversion theorem. The analytical model is very general and can be used for arbitrary transmit- and receive-antennas, fading distributions, fading spatial correlations, and training pilots. The analytical derivation is substantiated through Monte Carlo simulations, and it is shown, over independent and identically distributed (i.i.d.) Rayleigh fading channels, that SSK modulation is as robust as single-antenna systems to imperfect channel knowledge, and that TOSD-SSK modulation is more robust to channel estimation errors than the Alamouti scheme. Furthermore, it is pointed out that only few training pilots are needed to get reliable enough channel estimates for data detection, and that transmit- and receive-diversity of SSK and TOSD-SSK modulations are preserved even with imperfect channel knowledge.
期刊介绍:
The IEEE Transactions on Communications is dedicated to publishing high-quality manuscripts that showcase advancements in the state-of-the-art of telecommunications. Our scope encompasses all aspects of telecommunications, including telephone, telegraphy, facsimile, and television, facilitated by electromagnetic propagation methods such as radio, wire, aerial, underground, coaxial, and submarine cables, as well as waveguides, communication satellites, and lasers. We cover telecommunications in various settings, including marine, aeronautical, space, and fixed station services, addressing topics such as repeaters, radio relaying, signal storage, regeneration, error detection and correction, multiplexing, carrier techniques, communication switching systems, data communications, and communication theory. Join us in advancing the field of telecommunications through groundbreaking research and innovation.