Sparse Representation based Video Quality Assessment for Synthesized 3D Videos.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-07-29 DOI:10.1109/TIP.2019.2929433
Yun Zhang, Huan Zhang, Mei Yu, Sam Kwong, Yo-Sung Ho
{"title":"Sparse Representation based Video Quality Assessment for Synthesized 3D Videos.","authors":"Yun Zhang, Huan Zhang, Mei Yu, Sam Kwong, Yo-Sung Ho","doi":"10.1109/TIP.2019.2929433","DOIUrl":null,"url":null,"abstract":"<p><p>The temporal flicker distortion is one of the most annoying noises in synthesized virtual view videos when they are rendered by compressed multi-view video plus depth in Three Dimensional (3D) video system. To assess the synthesized view video quality and further optimize the compression techniques in 3D video system, objective video quality assessment which can accurately measure the flicker distortion is highly needed. In this paper, we propose a full reference sparse representation based video quality assessment method towards synthesized 3D videos. Firstly, a synthesized video, treated as a 3D volume data with spatial (X-Y) and temporal (T) domains, is reformed and decomposed as a number of spatially neighboring temporal layers, i.e., X-T or Y-T planes. Gradient features in temporal layers of the synthesized video and strong edges of depth maps are used as key features in detecting the location of flicker distortions. Secondly, dictionary learning and sparse representation for the temporal layers are then derived and applied to effectively represent the temporal flicker distortion. Thirdly, a rank pooling method is used to pool all the temporal layer scores and obtain the score for the flicker distortion. Finally, the temporal flicker distortion measurement is combined with the conventional spatial distortion measurement to assess the quality of synthesized 3D videos. Experimental results on synthesized video quality database demonstrate our proposed method is significantly superior to other state-of-the-art methods, especially on the view synthesis distortions induced from depth videos.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2929433","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The temporal flicker distortion is one of the most annoying noises in synthesized virtual view videos when they are rendered by compressed multi-view video plus depth in Three Dimensional (3D) video system. To assess the synthesized view video quality and further optimize the compression techniques in 3D video system, objective video quality assessment which can accurately measure the flicker distortion is highly needed. In this paper, we propose a full reference sparse representation based video quality assessment method towards synthesized 3D videos. Firstly, a synthesized video, treated as a 3D volume data with spatial (X-Y) and temporal (T) domains, is reformed and decomposed as a number of spatially neighboring temporal layers, i.e., X-T or Y-T planes. Gradient features in temporal layers of the synthesized video and strong edges of depth maps are used as key features in detecting the location of flicker distortions. Secondly, dictionary learning and sparse representation for the temporal layers are then derived and applied to effectively represent the temporal flicker distortion. Thirdly, a rank pooling method is used to pool all the temporal layer scores and obtain the score for the flicker distortion. Finally, the temporal flicker distortion measurement is combined with the conventional spatial distortion measurement to assess the quality of synthesized 3D videos. Experimental results on synthesized video quality database demonstrate our proposed method is significantly superior to other state-of-the-art methods, especially on the view synthesis distortions induced from depth videos.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示的合成三维视频质量评估
在三维(3D)视频系统中,当合成虚拟视图视频通过压缩多视图视频和深度视频渲染时,时间闪烁失真是最恼人的噪声之一。为了评估合成视图视频质量并进一步优化三维视频系统中的压缩技术,亟需能够准确测量闪烁失真的客观视频质量评估。本文针对合成三维视频提出了一种基于全参考稀疏表示的视频质量评估方法。首先,合成视频被视为具有空间(X-Y)域和时间(T)域的三维体数据,被重构并分解为多个空间上相邻的时间层,即 X-T 或 Y-T 平面。合成视频时间层的梯度特征和深度图的强边缘是检测闪烁失真的关键特征。其次,对时间层进行字典学习和稀疏表示,从而有效地表示时间闪烁失真。第三,使用秩集合方法集合所有时间层得分,得到闪烁失真的得分。最后,将时间闪烁失真测量与传统的空间失真测量相结合,评估合成三维视频的质量。合成视频质量数据库的实验结果表明,我们提出的方法明显优于其他最先进的方法,尤其是在深度视频引起的视图合成失真方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
MWFormer: Multi-Weather Image Restoration Using Degradation-Aware Transformers ESOD: Efficient Small Object Detection on High-Resolution Images GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1