Noise-Robust Iterative Back-Projection.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-09-16 DOI:10.1109/TIP.2019.2940414
Jun-Sang Yoo, Jong-Ok Kim
{"title":"Noise-Robust Iterative Back-Projection.","authors":"Jun-Sang Yoo, Jong-Ok Kim","doi":"10.1109/TIP.2019.2940414","DOIUrl":null,"url":null,"abstract":"<p><p>Noisy image super-resolution (SR) is a significant challenging process due to the smoothness caused by denoising. Iterative back-projection (IBP) can be helpful in further enhancing the reconstructed SR image, but there is no clean reference image available. This paper proposes a novel back-projection algorithm for noisy image SR. Its main goal is to pursuit the consistency between LR and SR images. We aim to estimate the clean reconstruction error to be back-projected, using the noisy and denoised reconstruction errors. We formulate a new cost function on the principal component analysis (PCA) transform domain to estimate the clean reconstruction error. In the data term of the cost function, noisy and denoised reconstruction errors are combined in a region-adaptive manner using texture probability. In addition, the sparsity constraint is incorporated into the regularization term, based on the Laplacian characteristics of the reconstruction error. Finally, we propose an eigenvector estimation method to minimize the effect of noise. The experimental results demonstrate that the proposed method can perform back-projection in a more noise-robust manner than the conventional IBP, and harmoniously work with any other SR methods as a post-processing.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2940414","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Noisy image super-resolution (SR) is a significant challenging process due to the smoothness caused by denoising. Iterative back-projection (IBP) can be helpful in further enhancing the reconstructed SR image, but there is no clean reference image available. This paper proposes a novel back-projection algorithm for noisy image SR. Its main goal is to pursuit the consistency between LR and SR images. We aim to estimate the clean reconstruction error to be back-projected, using the noisy and denoised reconstruction errors. We formulate a new cost function on the principal component analysis (PCA) transform domain to estimate the clean reconstruction error. In the data term of the cost function, noisy and denoised reconstruction errors are combined in a region-adaptive manner using texture probability. In addition, the sparsity constraint is incorporated into the regularization term, based on the Laplacian characteristics of the reconstruction error. Finally, we propose an eigenvector estimation method to minimize the effect of noise. The experimental results demonstrate that the proposed method can perform back-projection in a more noise-robust manner than the conventional IBP, and harmoniously work with any other SR methods as a post-processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声抑制迭代反投影
噪点图像超分辨率(SR)是一个极具挑战性的过程,因为去噪会导致图像不平滑。迭代反投影(IBP)有助于进一步增强重建的 SR 图像,但没有干净的参考图像可用。本文提出了一种用于噪声图像 SR 的新型反投影算法。其主要目标是追求 LR 和 SR 图像之间的一致性。我们的目标是利用噪声和去噪重建误差来估计待反投影的干净重建误差。我们在主成分分析(PCA)变换域上制定了一个新的代价函数来估计干净的重建误差。在成本函数的数据项中,利用纹理概率以区域自适应的方式将噪声和去噪重建误差结合起来。此外,根据重建误差的拉普拉斯特性,将稀疏性约束纳入正则化项。最后,我们提出了一种特征向量估计方法,以最大限度地减少噪声的影响。实验结果表明,与传统的 IBP 方法相比,所提出的方法能以更低噪声的方式进行反向投影,并能作为后处理与其他任何 SR 方法协调工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1