{"title":"Receptive Field Size vs. Model Depth for Single Image Super-resolution.","authors":"Ruxin Wang, Mingming Gong, Dacheng Tao","doi":"10.1109/TIP.2019.2941327","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of single image super-resolution (SISR) has been largely improved by innovative designs of deep architectures. An important claim raised by these designs is that the deep models have large receptive field size and strong nonlinearity. However, we are concerned about the question that which factor, receptive field size or model depth, is more critical for SISR. Towards revealing the answers, in this paper, we propose a strategy based on dilated convolution to investigate how the two factors affect the performance of SISR. Our findings from exhaustive investigations suggest that SISR is more sensitive to the changes of receptive field size than to the model depth variations, and that the model depth must be congruent with the receptive field size to produce improved performance. These findings inspire us to design a shallower architecture which can save computational and memory cost while preserving comparable effectiveness with respect to a much deeper architecture.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2941327","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of single image super-resolution (SISR) has been largely improved by innovative designs of deep architectures. An important claim raised by these designs is that the deep models have large receptive field size and strong nonlinearity. However, we are concerned about the question that which factor, receptive field size or model depth, is more critical for SISR. Towards revealing the answers, in this paper, we propose a strategy based on dilated convolution to investigate how the two factors affect the performance of SISR. Our findings from exhaustive investigations suggest that SISR is more sensitive to the changes of receptive field size than to the model depth variations, and that the model depth must be congruent with the receptive field size to produce improved performance. These findings inspire us to design a shallower architecture which can save computational and memory cost while preserving comparable effectiveness with respect to a much deeper architecture.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.