Learning Nonclassical Receptive Field Modulation for Contour Detection.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-09-16 DOI:10.1109/TIP.2019.2940690
Qiling Tang, Nong Sang, Haihua Liu
{"title":"Learning Nonclassical Receptive Field Modulation for Contour Detection.","authors":"Qiling Tang, Nong Sang, Haihua Liu","doi":"10.1109/TIP.2019.2940690","DOIUrl":null,"url":null,"abstract":"<p><p>This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2940690","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This work develops a biologically inspired neural network for contour detection in natural images by combining the nonclassical receptive field modulation mechanism with a deep learning framework. The input image is first convolved with the local feature detectors to produce the classical receptive field responses, and then a corresponding modulatory kernel is constructed for each feature map to model the nonclassical receptive field modulation behaviors. The modulatory effects can activate a larger cortical area and thus allow cortical neurons to integrate a broader range of visual information to recognize complex cases. Additionally, to characterize spatial structures at various scales, a multiresolution technique is used to represent visual field information from fine to coarse. Different scale responses are combined to estimate the contour probability. Our method achieves state-of-the-art results among all biologically inspired contour detection models. This study provides a method for improving visual modeling of contour detection and inspires new ideas for integrating more brain cognitive mechanisms into deep neural networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习用于轮廓检测的非经典感知场调制
这项研究通过将非经典感受野调制机制与深度学习框架相结合,开发了一种受生物启发的神经网络,用于自然图像中的轮廓检测。首先将输入图像与局部特征检测器进行卷积,以产生经典感受野响应,然后为每个特征图构建相应的调制核,以模拟非经典感受野调制行为。调制效应可以激活更大的皮层区域,从而使皮层神经元能够整合更广泛的视觉信息来识别复杂的情况。此外,为了表征不同尺度的空间结构,还使用了多分辨率技术来表示从精细到粗糙的视场信息。不同尺度的反应被结合起来以估计轮廓概率。在所有受生物启发的轮廓检测模型中,我们的方法取得了最先进的结果。这项研究提供了一种改进轮廓检测视觉建模的方法,并启发了将更多大脑认知机制整合到深度神经网络中的新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1