Spyridon Samothrakis, Diego Perez Liebana, S. Lucas, Philipp Rohlfshagen
{"title":"Predicting Dominance Rankings for Score-Based Games","authors":"Spyridon Samothrakis, Diego Perez Liebana, S. Lucas, Philipp Rohlfshagen","doi":"10.1109/TCIAIG.2014.2346242","DOIUrl":null,"url":null,"abstract":"Game competitions may involve different player roles and be score-based rather than win/loss based. This raises the issue of how best to draw opponents for matches in ongoing competitions, and how best to rank the players in each role. An example is the Ms Pac-Man versus Ghosts Competition which requires competitors to develop software controllers to take charge of the game's protagonists: participants may develop software controllers for either or both Ms Pac-Man and the team of four ghosts. In this paper, we compare two ranking schemes for win-loss games, Bayes Elo and Glicko. We convert the game into one of win-loss (“dominance”) by matching controllers of identical type against the same opponent in a series of pair-wise comparisons. This implicitly creates a “solution concept” as to what a constitutes a good player. We analyze how many games are needed under two popular ranking algorithms, Glicko and Bayes Elo, before one can infer the strength of the players, according to our proposed solution concept, without performing an exhaustive evaluation. We show that Glicko should be the method of choice for online score-based game competitions.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2346242","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2346242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 11
Abstract
Game competitions may involve different player roles and be score-based rather than win/loss based. This raises the issue of how best to draw opponents for matches in ongoing competitions, and how best to rank the players in each role. An example is the Ms Pac-Man versus Ghosts Competition which requires competitors to develop software controllers to take charge of the game's protagonists: participants may develop software controllers for either or both Ms Pac-Man and the team of four ghosts. In this paper, we compare two ranking schemes for win-loss games, Bayes Elo and Glicko. We convert the game into one of win-loss (“dominance”) by matching controllers of identical type against the same opponent in a series of pair-wise comparisons. This implicitly creates a “solution concept” as to what a constitutes a good player. We analyze how many games are needed under two popular ranking algorithms, Glicko and Bayes Elo, before one can infer the strength of the players, according to our proposed solution concept, without performing an exhaustive evaluation. We show that Glicko should be the method of choice for online score-based game competitions.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.