H. Prendinger, Kamthorn Puntumapon, Marconi Madruga Filho
{"title":"Extending Real-Time Challenge Balancing to Multiplayer Games: A Study on Eco-Driving","authors":"H. Prendinger, Kamthorn Puntumapon, Marconi Madruga Filho","doi":"10.1109/TCIAIG.2014.2364258","DOIUrl":null,"url":null,"abstract":"Multiplayer games are an important and popular game mode for networked players. Since games are played by a diverse audience, it is important to scale the difficulty, or challenge, according to the skill level of the players. However, current approaches to real-time challenge balancing (RCB) in games are only applicable to single-player scenarios. In multiplayer scenarios, players with different skill levels may be present in the same area, and hence adjusting the game difficulty to match the skill of one player may affect the other players in an undesirable way. To address this problem, we have previously developed a new approach based on distributed constraint optimization, which achieves the optimal challenge level for multiple players in real-time. The main contribution of this paper is an experiment that was performed with our new multiplayer real-time challenge balancing method applied to eco-driving. The results of the experiment suggest the effectiveness of RCB.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"27-32"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2364258","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2364258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5
Abstract
Multiplayer games are an important and popular game mode for networked players. Since games are played by a diverse audience, it is important to scale the difficulty, or challenge, according to the skill level of the players. However, current approaches to real-time challenge balancing (RCB) in games are only applicable to single-player scenarios. In multiplayer scenarios, players with different skill levels may be present in the same area, and hence adjusting the game difficulty to match the skill of one player may affect the other players in an undesirable way. To address this problem, we have previously developed a new approach based on distributed constraint optimization, which achieves the optimal challenge level for multiple players in real-time. The main contribution of this paper is an experiment that was performed with our new multiplayer real-time challenge balancing method applied to eco-driving. The results of the experiment suggest the effectiveness of RCB.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.