{"title":"Hybrid Pathfinding in StarCraft","authors":"Johan Hagelbäck","doi":"10.1109/TCIAIG.2015.2414447","DOIUrl":null,"url":null,"abstract":"Micromanagement is a very important aspect of real-time strategy (RTS) games. It involves moving single units or groups of units effectively on the battle field, targeting the most threatening enemy units and use the unit's special abilities when they are the most harmful for the enemy or the most beneficial for the player. Designing good micromanagement is a challenging task for AI bot developers. In this paper, we address the micromanagement subtask of positioning units effectively in combat situations. Two different approaches are evaluated, one based on potential fields and the other based on flocking algorithms. The results show that both the potential fields version and the flocking version clearly increases the win percentage of the bot, but the difference in wins between the two is minimal. The results also show that the more flexible potential fields technique requires much more hardware resources than the more simple flocking technique.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"26 1","pages":"319-324"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2414447","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2015.2414447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 18
Abstract
Micromanagement is a very important aspect of real-time strategy (RTS) games. It involves moving single units or groups of units effectively on the battle field, targeting the most threatening enemy units and use the unit's special abilities when they are the most harmful for the enemy or the most beneficial for the player. Designing good micromanagement is a challenging task for AI bot developers. In this paper, we address the micromanagement subtask of positioning units effectively in combat situations. Two different approaches are evaluated, one based on potential fields and the other based on flocking algorithms. The results show that both the potential fields version and the flocking version clearly increases the win percentage of the bot, but the difference in wins between the two is minimal. The results also show that the more flexible potential fields technique requires much more hardware resources than the more simple flocking technique.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.