Florian Richoux, Alberto Uriarte, Jean-François Baffier
{"title":"ghost: A Combinatorial Optimization Framework for Real-Time Problems","authors":"Florian Richoux, Alberto Uriarte, Jean-François Baffier","doi":"10.1109/TCIAIG.2016.2573199","DOIUrl":null,"url":null,"abstract":"This paper presents GHOST, a combinatorial optimization framework that a real-time strategy (RTS) AI developer can use to model and solve any problem encoded as a constraint satisfaction/optimization problem (CSP/COP). We show a way to model three different problems as a CSP/COP, using instances from the RTS game StarCraft as test beds. Each problem belongs to a specific level of abstraction (the target selection as reactive control problem, the wall-in as a tactics problem, and the build order planning as a strategy problem). In our experiments, GHOST shows good results computed within some tens of milliseconds. We also show that GHOST outperforms state-of-the-art constraint solvers, matching them on the resources allocation problem, a common combinatorial optimization problem.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"377-388"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2573199","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2573199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents GHOST, a combinatorial optimization framework that a real-time strategy (RTS) AI developer can use to model and solve any problem encoded as a constraint satisfaction/optimization problem (CSP/COP). We show a way to model three different problems as a CSP/COP, using instances from the RTS game StarCraft as test beds. Each problem belongs to a specific level of abstraction (the target selection as reactive control problem, the wall-in as a tactics problem, and the build order planning as a strategy problem). In our experiments, GHOST shows good results computed within some tens of milliseconds. We also show that GHOST outperforms state-of-the-art constraint solvers, matching them on the resources allocation problem, a common combinatorial optimization problem.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.