M. Gaudesi, Elio Piccolo, Giovanni Squillero, A. Tonda
{"title":"Exploiting Evolutionary Modeling to Prevail in Iterated Prisoner’s Dilemma Tournaments","authors":"M. Gaudesi, Elio Piccolo, Giovanni Squillero, A. Tonda","doi":"10.1109/TCIAIG.2015.2439061","DOIUrl":null,"url":null,"abstract":"The iterated prisoner's dilemma is a famous model of cooperation and conflict in game theory. Its origin can be traced back to the Cold War, and countless strategies for playing it have been proposed so far, either designed by hand or automatically generated by computers. In the 2000s, scholars started focusing on adaptive players, that is, able to classify their opponent's behavior and adopt an effective counter-strategy. The player presented in this paper, pushes such idea even further: it builds a model of the current adversary from scratch, without relying on any pre-defined archetypes, and tweaks it as the game develops using an evolutionary algorithm; at the same time, it exploits the model to lead the game into the most favorable continuation. Models are compact nondeterministic finite state machines; they are extremely efficient in predicting opponents' replies, without being completely correct by necessity. Experimental results show that such a player is able to win several one-to-one games against strong opponents taken from the literature, and that it consistently prevails in round-robin tournaments of different sizes.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"27 1","pages":"288-300"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2439061","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2015.2439061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10
Abstract
The iterated prisoner's dilemma is a famous model of cooperation and conflict in game theory. Its origin can be traced back to the Cold War, and countless strategies for playing it have been proposed so far, either designed by hand or automatically generated by computers. In the 2000s, scholars started focusing on adaptive players, that is, able to classify their opponent's behavior and adopt an effective counter-strategy. The player presented in this paper, pushes such idea even further: it builds a model of the current adversary from scratch, without relying on any pre-defined archetypes, and tweaks it as the game develops using an evolutionary algorithm; at the same time, it exploits the model to lead the game into the most favorable continuation. Models are compact nondeterministic finite state machines; they are extremely efficient in predicting opponents' replies, without being completely correct by necessity. Experimental results show that such a player is able to win several one-to-one games against strong opponents taken from the literature, and that it consistently prevails in round-robin tournaments of different sizes.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.