Evolving Effective Microbehaviors in Real-Time Strategy Games

Siming Liu, S. Louis, Christopher A. Ballinger
{"title":"Evolving Effective Microbehaviors in Real-Time Strategy Games","authors":"Siming Liu, S. Louis, Christopher A. Ballinger","doi":"10.1109/TCIAIG.2016.2544844","DOIUrl":null,"url":null,"abstract":"We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"351-362"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2544844","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2544844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 14

Abstract

We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
即时策略游戏中不断进化的有效微行为
我们研究了启发式搜索算法,以在实时战略(RTS)游戏的战斗场景中生成高质量的微管理。宏观和微观管理是RTS游戏的两个关键元素。优秀的宏观能够帮助玩家收集更多资源并创造更多单位,而优秀的微操作则能够帮助玩家在面对相同数量和类型的对手时赢得战斗,或者在寡不敌众的情况下获胜。在本文中,我们使用影响图和势场作为基础表示来演化短期定位和移动策略。战斗中的单位微行为被编码成14个参数。遗传算法通过操纵这14个参数来进化出良好的微行为。我们将进化后的ECSLBot与另外两个最先进的bot (UAlbertaBot和Nova)在流行的RTS游戏《星际争霸》中的几个小冲突场景中进行了比较。结果表明,经遗传算法调整后的ECSLBot在放线效率、目标选择和逃跑方面均优于ualberbot和Nova。进一步的实验表明,在一个场景中进化的参数值在其他场景中也能很好地工作,并且我们可以在预先进化的参数集之间切换,以便在包含多个类型的对手单元的未知场景中表现良好。我们相信我们的表现和方法适用于每一种单位类型的兴趣,可以产生有效的微性能对抗近战和远程对手,并提供一个可行的方法来完成RTS机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Intelligence and AI in Games
IEEE Transactions on Computational Intelligence and AI in Games COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.
期刊最新文献
A User Trust System for Online Games—Part II: A Subjective Logic Approach for Trust Inference Accelerating Board Games Through Hardware/Software Codesign Creating AI Characters for Fighting Games Using Genetic Programming Multiagent Path Finding With Persistence Conflicts Changing Resources Available to Game Playing Agents: Another Relevant Design Factor in Agent Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1