{"title":"Evolving Effective Microbehaviors in Real-Time Strategy Games","authors":"Siming Liu, S. Louis, Christopher A. Ballinger","doi":"10.1109/TCIAIG.2016.2544844","DOIUrl":null,"url":null,"abstract":"We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"351-362"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2544844","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2544844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 14
Abstract
We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.