Federated Learning-Assisted Vehicular Edge Computing: Architecture and Research Directions

IF 5.8 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Vehicular Technology Magazine Pub Date : 2023-12-01 DOI:10.1109/mvt.2023.3297793
Xinran Zhang, Jingyuan Liu, T. Hu, Zheng Chang, Yanru Zhang, Geyong Min
{"title":"Federated Learning-Assisted Vehicular Edge Computing: Architecture and Research Directions","authors":"Xinran Zhang, Jingyuan Liu, T. Hu, Zheng Chang, Yanru Zhang, Geyong Min","doi":"10.1109/mvt.2023.3297793","DOIUrl":null,"url":null,"abstract":"Recently, realizing machine learning (ML)-based technologies with the aid of mobile edge computing (MEC) in the vehicular network to establish an intelligent transportation system (ITS) has gained considerable interest. To fully utilize the data and onboard units of vehicles, it is possible to implement federated learning (FL), which can locally train the model and centrally aggregate the results, in the vehicular edge computing (VEC) system for a vision of connected and autonomous vehicles. In this article, we review and present the concept of FL and introduce a general architecture of FL-assisted VEC to advance development of FL in the vehicular network. The enabling technologies for designing such a system are discussed and, with a focus on the vehicle selection algorithm, performance evaluations are conducted. Recommendations on future research directions are highlighted as well.","PeriodicalId":55004,"journal":{"name":"IEEE Vehicular Technology Magazine","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Vehicular Technology Magazine","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mvt.2023.3297793","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, realizing machine learning (ML)-based technologies with the aid of mobile edge computing (MEC) in the vehicular network to establish an intelligent transportation system (ITS) has gained considerable interest. To fully utilize the data and onboard units of vehicles, it is possible to implement federated learning (FL), which can locally train the model and centrally aggregate the results, in the vehicular edge computing (VEC) system for a vision of connected and autonomous vehicles. In this article, we review and present the concept of FL and introduce a general architecture of FL-assisted VEC to advance development of FL in the vehicular network. The enabling technologies for designing such a system are discussed and, with a focus on the vehicle selection algorithm, performance evaluations are conducted. Recommendations on future research directions are highlighted as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联邦学习辅助车辆边缘计算:体系结构与研究方向
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Vehicular Technology Magazine
IEEE Vehicular Technology Magazine ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
14.10
自引率
1.20%
发文量
66
审稿时长
>12 weeks
期刊介绍: IEEE Vehicular Technology Magazine is a premier publication that features peer-reviewed articles showcasing advancements in areas of interest to the IEEE Vehicular Technology Society. Our scope encompasses theoretical, experimental, application, and operational aspects of electrical and electronic engineering relevant to motor vehicles and associated land transportation infrastructure. This includes technologies for terrestrial mobile vehicular services, components, systems, and auxiliary functions within motor vehicles, as well as components and systems used in both automated and non-automated facets of ground transport technology. The magazine focuses on intra-vehicular components, systems, and applications, offering tutorials, surveys, coverage of emerging technology, and serving as a platform for communication between the IEEE VTS governing body and its membership. Join us in exploring the latest developments in vehicular technology.
期刊最新文献
On Exploiting User Equipment Relaying Capabilities in Beyond 5G Networks: Opportunities, Challenges, and Road Map Tackling Satellite Mobility in LEO-Based Non-Terrestrial Networks Federated Multiagent Deep Reinforcement Learning for Intelligent IoT Wireless Communications: Overview and Challenges Upcoming VTS Conferences Vehicular Technology Magazine Staff List
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1