A Developmental Approach to Structural Self-Organization in Reservoir Computing

Jun Yin, Y. Meng, Yaochu Jin
{"title":"A Developmental Approach to Structural Self-Organization in Reservoir Computing","authors":"Jun Yin, Y. Meng, Yaochu Jin","doi":"10.1109/TAMD.2012.2182765","DOIUrl":null,"url":null,"abstract":"Reservoir computing (RC) is a computational framework for neural network based information processing. Little work, however, has been conducted on adapting the structure of the neural reservoir. In this paper, we propose a developmental approach to structural self-organization in reservoir computing. More specifically, a recurrent spiking neural network is adopted for building up the reservoir, whose synaptic and structural plasticity are regulated by a gene regulatory network (GRN). Meanwhile, the expression dynamics of the GRN is directly influenced by the activity of the neurons in the reservoir. We term this proposed model as GRN-regulated self-organizing RC (GRN-SO-RC). Contrary to a randomly initialized and fixed structure used in most existing RC models, the structure of the reservoir in the GRN-SO-RC model is self-organized to adapt to the specific task using the GRN-based mechanism. To evaluate the proposed model, experiments have been conducted on several benchmark problems widely used in RC models, such as memory capacity and nonlinear auto-regressive moving average. In addition, we apply the GRN-SO-RC model to solving complex real-world problems, including speech recognition and human action recognition. Our experimental results on both the benchmark and real-world problems demonstrate that the GRN-SO-RC model is effective and robust in solving different types of problems.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"4 1","pages":"273-289"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2012.2182765","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2012.2182765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Reservoir computing (RC) is a computational framework for neural network based information processing. Little work, however, has been conducted on adapting the structure of the neural reservoir. In this paper, we propose a developmental approach to structural self-organization in reservoir computing. More specifically, a recurrent spiking neural network is adopted for building up the reservoir, whose synaptic and structural plasticity are regulated by a gene regulatory network (GRN). Meanwhile, the expression dynamics of the GRN is directly influenced by the activity of the neurons in the reservoir. We term this proposed model as GRN-regulated self-organizing RC (GRN-SO-RC). Contrary to a randomly initialized and fixed structure used in most existing RC models, the structure of the reservoir in the GRN-SO-RC model is self-organized to adapt to the specific task using the GRN-based mechanism. To evaluate the proposed model, experiments have been conducted on several benchmark problems widely used in RC models, such as memory capacity and nonlinear auto-regressive moving average. In addition, we apply the GRN-SO-RC model to solving complex real-world problems, including speech recognition and human action recognition. Our experimental results on both the benchmark and real-world problems demonstrate that the GRN-SO-RC model is effective and robust in solving different types of problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
油藏计算中结构自组织的发展方法
储层计算(RC)是一种基于神经网络的信息处理计算框架。然而,关于调节神经库结构的研究很少。本文提出了一种油藏计算中结构自组织的发展方法。更具体地说,采用循环脉冲神经网络来建立水库,水库的突触和结构可塑性由基因调控网络(GRN)调节。同时,GRN的表达动态也直接受到储库中神经元活动的影响。我们将该模型称为grn调节自组织RC (GRN-SO-RC)。与大多数现有RC模型采用随机初始化和固定结构不同,GRN-SO-RC模型中的水库结构采用基于grn的机制自组织以适应特定任务。为了验证所提出的模型,我们对RC模型中常用的几个基准问题,如记忆容量和非线性自回归移动平均进行了实验。此外,我们将GRN-SO-RC模型应用于解决复杂的现实问题,包括语音识别和人类动作识别。我们在基准和现实问题上的实验结果表明,GRN-SO-RC模型在解决不同类型的问题方面是有效的和鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1