LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning

S. Franklin, Tamas Madl, S. D’Mello, Javier Snaider
{"title":"LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning","authors":"S. Franklin, Tamas Madl, S. D’Mello, Javier Snaider","doi":"10.1109/TAMD.2013.2277589","DOIUrl":null,"url":null,"abstract":"We describe a cognitive architecture learning intelligent distribution agent (LIDA) that affords attention, action selection and human-like learning intended for use in controlling cognitive agents that replicate human experiments as well as performing real-world tasks. LIDA combines sophisticated action selection, motivation via emotions, a centrally important attention mechanism, and multimodal instructionalist and selectionist learning. Empirically grounded in cognitive science and cognitive neuroscience, the LIDA architecture employs a variety of modules and processes, each with its own effective representations and algorithms. LIDA has much to say about motivation, emotion, attention, and autonomous learning in cognitive agents. In this paper, we summarize the LIDA model together with its resulting agent architecture, describe its computational implementation, and discuss results of simulations that replicate known experimental data. We also discuss some of LIDA's conceptual modules, propose nonlinear dynamics as a bridge between LIDA's modules and processes and the underlying neuroscience, and point out some of the differences between LIDA and other cognitive architectures. Finally, we discuss how LIDA addresses some of the open issues in cognitive architecture research.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"6 1","pages":"19-41"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2013.2277589","citationCount":"184","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2013.2277589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184

Abstract

We describe a cognitive architecture learning intelligent distribution agent (LIDA) that affords attention, action selection and human-like learning intended for use in controlling cognitive agents that replicate human experiments as well as performing real-world tasks. LIDA combines sophisticated action selection, motivation via emotions, a centrally important attention mechanism, and multimodal instructionalist and selectionist learning. Empirically grounded in cognitive science and cognitive neuroscience, the LIDA architecture employs a variety of modules and processes, each with its own effective representations and algorithms. LIDA has much to say about motivation, emotion, attention, and autonomous learning in cognitive agents. In this paper, we summarize the LIDA model together with its resulting agent architecture, describe its computational implementation, and discuss results of simulations that replicate known experimental data. We also discuss some of LIDA's conceptual modules, propose nonlinear dynamics as a bridge between LIDA's modules and processes and the underlying neuroscience, and point out some of the differences between LIDA and other cognitive architectures. Finally, we discuss how LIDA addresses some of the open issues in cognitive architecture research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LIDA:用于认知、情感和学习的系统级架构
我们描述了一个认知架构学习智能分布代理(LIDA),它提供了注意力、行动选择和类人学习,旨在用于控制复制人类实验以及执行现实世界任务的认知代理。LIDA结合了复杂的行动选择,通过情绪的动机,一个重要的集中注意机制,以及多模态指示主义和选择主义学习。LIDA架构以认知科学和认知神经科学为经验基础,采用各种模块和过程,每个模块和过程都有自己的有效表示和算法。LIDA对认知代理中的动机、情感、注意力和自主学习有很多看法。在本文中,我们总结了LIDA模型及其产生的代理架构,描述了其计算实现,并讨论了复制已知实验数据的模拟结果。我们还讨论了LIDA的一些概念模块,提出非线性动力学作为LIDA的模块和过程与基础神经科学之间的桥梁,并指出LIDA与其他认知架构之间的一些差异。最后,我们讨论了LIDA如何解决认知建筑研究中的一些开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1