Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning

Yunzhi Wang, V. Chattaraman, Hyejeong Kim, G. Deshpande
{"title":"Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning","authors":"Yunzhi Wang, V. Chattaraman, Hyejeong Kim, G. Deshpande","doi":"10.1109/TAMD.2015.2434733","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms allow us to directly predict brain states based on functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the application of this framework to neuromarketing by predicting purchase decisions from spatio-temporal fMRI data. A sample of 24 subjects were shown product images and asked to make decisions of whether to buy them or not while undergoing fMRI scanning. Eight brain regions which were significantly activated during decision-making were identified using a general linear model. Time series were extracted from these regions and input into a recursive cluster elimination based support vector machine (RCE-SVM) for predicting purchase decisions. This method iteratively eliminates features which are unimportant until only the most discriminative features giving maximum accuracy are obtained. We were able to predict purchase decisions with 71% accuracy, which is higher than previously reported. In addition, we found that the most discriminative features were in signals from medial and superior frontal cortices. Therefore, this approach provides a reliable framework for using fMRI data to predict purchase-related decision-making as well as infer its neural correlates.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"248-255"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2434733","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2434733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Machine learning algorithms allow us to directly predict brain states based on functional magnetic resonance imaging (fMRI) data. In this study, we demonstrate the application of this framework to neuromarketing by predicting purchase decisions from spatio-temporal fMRI data. A sample of 24 subjects were shown product images and asked to make decisions of whether to buy them or not while undergoing fMRI scanning. Eight brain regions which were significantly activated during decision-making were identified using a general linear model. Time series were extracted from these regions and input into a recursive cluster elimination based support vector machine (RCE-SVM) for predicting purchase decisions. This method iteratively eliminates features which are unimportant until only the most discriminative features giving maximum accuracy are obtained. We were able to predict purchase decisions with 71% accuracy, which is higher than previously reported. In addition, we found that the most discriminative features were in signals from medial and superior frontal cortices. Therefore, this approach provides a reliable framework for using fMRI data to predict purchase-related decision-making as well as infer its neural correlates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空功能MRI特征的机器学习预测购买决策
机器学习算法使我们能够根据功能磁共振成像(fMRI)数据直接预测大脑状态。在本研究中,我们通过时空功能磁共振成像数据预测购买决策,展示了该框架在神经营销中的应用。在接受功能磁共振成像扫描的同时,研究人员向24名受试者展示了产品图像,并要求他们决定是否购买。使用一般线性模型确定了决策过程中显著激活的八个大脑区域。从这些区域提取时间序列,并将其输入到基于递归聚类消除的支持向量机(RCE-SVM)中,用于预测购买决策。该方法迭代地去除不重要的特征,直到只获得具有最大准确率的最具判别性的特征。我们能够以71%的准确率预测购买决策,这比之前报道的要高。此外,我们发现最具区别性的特征是来自内侧和上部额叶皮质的信号。因此,该方法为使用功能磁共振成像数据预测购买相关决策以及推断其神经相关性提供了可靠的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1