Can Real-Time, Adaptive Human–Robot Motor Coordination Improve Humans’ Overall Perception of a Robot?

Qiming Shen, K. Dautenhahn, J. Saunders, H. Kose-Bagci
{"title":"Can Real-Time, Adaptive Human–Robot Motor Coordination Improve Humans’ Overall Perception of a Robot?","authors":"Qiming Shen, K. Dautenhahn, J. Saunders, H. Kose-Bagci","doi":"10.1109/TAMD.2015.2398451","DOIUrl":null,"url":null,"abstract":"Previous research on social interaction among humans suggested that interpersonal motor coordination can help to establish social rapport. Our research addresses the question of whether, in a human-humanoid interaction experiment, the human's overall perception of a robot can be improved by realizing motor coordination behavior that allows the robot to adapt in real-time to a person's behavior. A synchrony detection method using information distance was adopted to realize the real-time human-robot motor coordination behavior, which guided the humanoid robot to coordinate its movements to a human by measuring the behavior synchrony between the robot and the human. The feedback of the participants indicated that most of the participants preferred to interact with the humanoid robot with the adaptive motor coordination capability. The results of this proof-of-concept study suggest that the motor coordination mechanism improved humans' overall perception of the humanoid robot. Together with our previous findings, namely that humans actively coordinate their behaviors to a humanoid robot's behaviors, this study further supports the hypothesis that bidirectional motor coordination could be a valid approach to facilitate adaptive human-humanoid interaction.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"52-64"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2398451","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2398451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Previous research on social interaction among humans suggested that interpersonal motor coordination can help to establish social rapport. Our research addresses the question of whether, in a human-humanoid interaction experiment, the human's overall perception of a robot can be improved by realizing motor coordination behavior that allows the robot to adapt in real-time to a person's behavior. A synchrony detection method using information distance was adopted to realize the real-time human-robot motor coordination behavior, which guided the humanoid robot to coordinate its movements to a human by measuring the behavior synchrony between the robot and the human. The feedback of the participants indicated that most of the participants preferred to interact with the humanoid robot with the adaptive motor coordination capability. The results of this proof-of-concept study suggest that the motor coordination mechanism improved humans' overall perception of the humanoid robot. Together with our previous findings, namely that humans actively coordinate their behaviors to a humanoid robot's behaviors, this study further supports the hypothesis that bidirectional motor coordination could be a valid approach to facilitate adaptive human-humanoid interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时、自适应的人机运动协调能提高人类对机器人的整体感知吗?
以往关于人类社会互动的研究表明,人际运动协调有助于建立社会关系。我们的研究解决了一个问题,即在一个人-人交互实验中,人类对机器人的整体感知是否可以通过实现运动协调行为来改善,从而使机器人能够实时适应人的行为。采用基于信息距离的同步检测方法实现实时人机运动协调行为,通过测量机器人与人之间的行为同步性,引导仿人机器人向人协调运动。参与者的反馈表明,大多数参与者更倾向于与具有自适应运动协调能力的人形机器人进行互动。这项概念验证研究的结果表明,运动协调机制提高了人类对类人机器人的整体感知。结合我们之前的研究结果,即人类主动协调自己的行为以适应类人机器人的行为,本研究进一步支持了双向运动协调可能是促进适应性人-类人互动的有效方法的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1