Local Multimodal Serial Analysis for Fusing EEG-fMRI: A New Method to Study Familial Cortical Myoclonic Tremor and Epilepsy

Li Dong, Pu Wang, Yi Bin, Jiayan Deng, Y. Li, Leiting Chen, C. Luo, D. Yao
{"title":"Local Multimodal Serial Analysis for Fusing EEG-fMRI: A New Method to Study Familial Cortical Myoclonic Tremor and Epilepsy","authors":"Li Dong, Pu Wang, Yi Bin, Jiayan Deng, Y. Li, Leiting Chen, C. Luo, D. Yao","doi":"10.1109/TAMD.2015.2411740","DOIUrl":null,"url":null,"abstract":"Integrating information of neuroimaging multimodalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), has become popularly for investigating various types of epilepsy. However, there are also some problems for the analysis of simultaneous EEG-fMRI data in epilepsy: one is the variation of HRFs, and another is low signal-to-noise ratio (SNR) in the data. Here, we propose a new multimodal unsupervised method, termed local multimodal serial analysis (LMSA), which may compensate for these deficiencies in multimodal integration. A simulation study with comparison to the traditional EEG-informed fMRI analysis which directly implemented the general linear model (GLM) was conducted to confirm the superior performance of LMSA. Then, applied to the simultaneous EEG-fMRI data of familial cortical myoclonic tremor and epilepsy (FCMTE), some meaningful information of BOLD changes related to the EEG discharges, such as the cerebellum and frontal lobe (especially in the inferior frontal gyrus), were found using LMSA. These results demonstrate that LMSA is a promising technique for exploring various data to provide integrated information that will further our understanding of brain dysfunction.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"311-319"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2411740","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2411740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Integrating information of neuroimaging multimodalities, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), has become popularly for investigating various types of epilepsy. However, there are also some problems for the analysis of simultaneous EEG-fMRI data in epilepsy: one is the variation of HRFs, and another is low signal-to-noise ratio (SNR) in the data. Here, we propose a new multimodal unsupervised method, termed local multimodal serial analysis (LMSA), which may compensate for these deficiencies in multimodal integration. A simulation study with comparison to the traditional EEG-informed fMRI analysis which directly implemented the general linear model (GLM) was conducted to confirm the superior performance of LMSA. Then, applied to the simultaneous EEG-fMRI data of familial cortical myoclonic tremor and epilepsy (FCMTE), some meaningful information of BOLD changes related to the EEG discharges, such as the cerebellum and frontal lobe (especially in the inferior frontal gyrus), were found using LMSA. These results demonstrate that LMSA is a promising technique for exploring various data to provide integrated information that will further our understanding of brain dysfunction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电-功能磁共振局部多模态序列分析:一种研究家族性皮质肌阵挛性震颤和癫痫的新方法
脑电图(EEG)和功能磁共振成像(fMRI)等神经成像多模式信息的整合已成为研究各种类型癫痫的热门方法。然而,对癫痫患者同时进行EEG-fMRI数据分析也存在一些问题:一是hrf的变化,二是数据的信噪比较低。在这里,我们提出了一种新的多模态无监督方法,称为局部多模态序列分析(LMSA),它可以弥补多模态集成的这些缺陷。通过与直接实现一般线性模型(general linear model, GLM)的传统eeg信息fMRI分析进行对比,验证了LMSA的优越性能。然后,将家族性皮质肌阵挛性震颤和癫痫(FCMTE)的同时EEG- fmri数据应用于LMSA,发现与脑电图放电相关的一些有意义的信息,如小脑和额叶(尤其是额下回)的BOLD变化。这些结果表明,LMSA是一种很有前途的技术,可以探索各种数据,提供综合信息,从而进一步了解脑功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1