Motor-Primed Visual Attention for Humanoid Robots

L. Lukic, A. Billard, J. Santos-Victor
{"title":"Motor-Primed Visual Attention for Humanoid Robots","authors":"L. Lukic, A. Billard, J. Santos-Victor","doi":"10.1109/TAMD.2015.2417353","DOIUrl":null,"url":null,"abstract":"We present a novel, biologically inspired, approach to an efficient allocation of visual resources for humanoid robots in a form of a motor-primed visual attentional landscape. The attentional landscape is a more general, dynamic and a more complex concept of an arrangement of spatial attention than the popular “attentional spotlight” or “zoom-lens” models of attention. Motor-priming of attention is a mechanism for prioritizing visual processing to motor-relevant parts of the visual field, in contrast to other, motor-irrelevant, parts. In particular, we present two techniques for constructing a visual “attentional landscape”. The first, more general, technique, is to devote visual attention to the reachable space of a robot (peripersonal space-primed attention). The second, more specialized, technique is to allocate visual attention with respect to motor plans of the robot (motor plans-primed attention). Hence, in our model, visual attention is not exclusively defined in terms of visual saliency in color, texture or intensity cues, it is rather modulated by motor information. This computational model is inspired by recent findings in visual neuroscience and psychology. In addition to two approaches to constructing the attentional landscape, we present two methods for using the attentional landscape for driving visual processing. We show that motor-priming of visual attention can be used to very efficiently distribute limited computational resources devoted to the visual processing. The proposed model is validated in a series of experiments conducted with the iCub robot, both using the simulator and the real robot.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"76-91"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2417353","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2417353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a novel, biologically inspired, approach to an efficient allocation of visual resources for humanoid robots in a form of a motor-primed visual attentional landscape. The attentional landscape is a more general, dynamic and a more complex concept of an arrangement of spatial attention than the popular “attentional spotlight” or “zoom-lens” models of attention. Motor-priming of attention is a mechanism for prioritizing visual processing to motor-relevant parts of the visual field, in contrast to other, motor-irrelevant, parts. In particular, we present two techniques for constructing a visual “attentional landscape”. The first, more general, technique, is to devote visual attention to the reachable space of a robot (peripersonal space-primed attention). The second, more specialized, technique is to allocate visual attention with respect to motor plans of the robot (motor plans-primed attention). Hence, in our model, visual attention is not exclusively defined in terms of visual saliency in color, texture or intensity cues, it is rather modulated by motor information. This computational model is inspired by recent findings in visual neuroscience and psychology. In addition to two approaches to constructing the attentional landscape, we present two methods for using the attentional landscape for driving visual processing. We show that motor-priming of visual attention can be used to very efficiently distribute limited computational resources devoted to the visual processing. The proposed model is validated in a series of experiments conducted with the iCub robot, both using the simulator and the real robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人形机器人的运动启动视觉注意
我们提出了一种新颖的、受生物学启发的方法,以一种运动启动的视觉注意力景观的形式,有效地分配人形机器人的视觉资源。与流行的“注意力聚光灯”或“变焦镜头”模式相比,“注意力景观”是一种更普遍、更动态、更复杂的空间注意力安排概念。注意的运动启动是一种将视觉处理优先于视野中与运动相关的部分,而不是其他与运动无关的部分的机制。我们特别提出了两种构建视觉“注意力景观”的技术。第一种更普遍的技术是将视觉注意力集中到机器人可触及的空间(personal space-primed attention)。第二种更专业的技术是根据机器人的运动计划分配视觉注意力(运动计划启动注意力)。因此,在我们的模型中,视觉注意并不完全是根据颜色、纹理或强度线索的视觉显著性来定义的,而是由运动信息调节的。这个计算模型的灵感来自于视觉神经科学和心理学的最新发现。除了两种构建注意景观的方法外,我们还提出了两种利用注意景观驱动视觉处理的方法。研究表明,视觉注意的运动启动可以非常有效地分配有限的用于视觉处理的计算资源。在iCub机器人上进行了一系列的仿真实验和真实机器人实验,验证了所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1