Randomized Structural Sparsity-Based Support Identification with Applications to Locating Activated or Discriminative Brain Areas: A Multicenter Reproducibility Study

Yilun Wang, Sheng Zhang, Junjie Zheng, Heng Chen, Huafu Chen
{"title":"Randomized Structural Sparsity-Based Support Identification with Applications to Locating Activated or Discriminative Brain Areas: A Multicenter Reproducibility Study","authors":"Yilun Wang, Sheng Zhang, Junjie Zheng, Heng Chen, Huafu Chen","doi":"10.1109/TAMD.2015.2427341","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on how to locate the relevant or discriminative brain regions related with external stimulus or certain mental decease, which is also called support identification, based on the neuroimaging data. The main difficulty lies in the extremely high dimensional voxel space and relatively few training samples, easily resulting in an unstable brain region discovery (or called feature selection in context of pattern recognition). When the training samples are from different centers and have between-center variations, it will be even harder to obtain a reliable and consistent result. Corresponding, we revisit our recently proposed algorithm based on stability selection and structural sparsity. It is applied to the multicenter MRI data analysis for the first time. A consistent and stable result is achieved across different centers despite the between-center data variation while many other state-of-the-art methods such as two sample t-test fail. Moreover, we have empirically showed that the performance of this algorithm is robust and insensitive to several of its key parameters. In addition, the support identification results on both functional MRI and structural MRI are interpretable and can be the potential biomarkers.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"7 1","pages":"287-300"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2427341","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2427341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we focus on how to locate the relevant or discriminative brain regions related with external stimulus or certain mental decease, which is also called support identification, based on the neuroimaging data. The main difficulty lies in the extremely high dimensional voxel space and relatively few training samples, easily resulting in an unstable brain region discovery (or called feature selection in context of pattern recognition). When the training samples are from different centers and have between-center variations, it will be even harder to obtain a reliable and consistent result. Corresponding, we revisit our recently proposed algorithm based on stability selection and structural sparsity. It is applied to the multicenter MRI data analysis for the first time. A consistent and stable result is achieved across different centers despite the between-center data variation while many other state-of-the-art methods such as two sample t-test fail. Moreover, we have empirically showed that the performance of this algorithm is robust and insensitive to several of its key parameters. In addition, the support identification results on both functional MRI and structural MRI are interpretable and can be the potential biomarkers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机结构稀疏性的支持识别与定位激活或判别脑区域的应用:多中心可重复性研究
本文主要研究如何根据神经影像学数据,定位与外界刺激或某种精神疾病相关或有区别的脑区,也称为支持识别。主要的困难在于极高的体素空间和相对较少的训练样本,容易导致不稳定的大脑区域发现(或称为模式识别中的特征选择)。当训练样本来自不同的中心,并且在中心之间存在差异时,获得可靠一致的结果将更加困难。相应地,我们重新审视了我们最近提出的基于稳定性选择和结构稀疏性的算法。首次应用于多中心MRI数据分析。尽管中心间数据存在差异,但在不同中心之间实现了一致和稳定的结果,而许多其他最先进的方法(如两个样本t检验)都失败了。此外,我们的经验表明,该算法的性能是鲁棒的和不敏感的几个关键参数。此外,功能MRI和结构MRI的支持识别结果具有可解释性,可以作为潜在的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1