Perceptual Experience Analysis for Tone-mapped HDR Videos Based on EEG and Peripheral Physiological Signals

Seong-eun Moon, Jong-Seok Lee
{"title":"Perceptual Experience Analysis for Tone-mapped HDR Videos Based on EEG and Peripheral Physiological Signals","authors":"Seong-eun Moon, Jong-Seok Lee","doi":"10.1109/TAMD.2015.2449553","DOIUrl":null,"url":null,"abstract":"High dynamic range (HDR) imaging has been attracting much attention as a technology that can provide immersive experience. Its ultimate goal is to provide better quality of experience (QoE) via enhanced contrast. In this paper, we analyze perceptual experience of tone-mapped HDR videos both explicitly by conducting a subjective questionnaire assessment and implicitly by using EEG and peripheral physiological signals. From the results of the subjective assessment, it is revealed that tone-mapped HDR videos are more interesting and more natural, and give better quality than low dynamic range (LDR) videos. Physiological signals were recorded during watching tone-mapped HDR and LDR videos, and classification systems are constructed to explore perceptual difference captured by the physiological signals. Significant difference in the physiological signals is observed between tone-mapped HDR and LDR videos in the classification under both a subject-dependent and a subject-independent scenarios. Also, significant difference in the signals between high versus low perceived contrast and overall quality is detected via classification under the subject-dependent scenario. Moreover, it is shown that features extracted from the gamma frequency band are effective for classification.","PeriodicalId":49193,"journal":{"name":"IEEE Transactions on Autonomous Mental Development","volume":"175 1","pages":"236-247"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TAMD.2015.2449553","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Autonomous Mental Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAMD.2015.2449553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

High dynamic range (HDR) imaging has been attracting much attention as a technology that can provide immersive experience. Its ultimate goal is to provide better quality of experience (QoE) via enhanced contrast. In this paper, we analyze perceptual experience of tone-mapped HDR videos both explicitly by conducting a subjective questionnaire assessment and implicitly by using EEG and peripheral physiological signals. From the results of the subjective assessment, it is revealed that tone-mapped HDR videos are more interesting and more natural, and give better quality than low dynamic range (LDR) videos. Physiological signals were recorded during watching tone-mapped HDR and LDR videos, and classification systems are constructed to explore perceptual difference captured by the physiological signals. Significant difference in the physiological signals is observed between tone-mapped HDR and LDR videos in the classification under both a subject-dependent and a subject-independent scenarios. Also, significant difference in the signals between high versus low perceived contrast and overall quality is detected via classification under the subject-dependent scenario. Moreover, it is shown that features extracted from the gamma frequency band are effective for classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图和外周生理信号的色调映射HDR视频感知体验分析
高动态范围(HDR)成像技术作为一种能够提供沉浸式体验的技术一直备受关注。其最终目标是通过增强对比度提供更好的体验质量(QoE)。在本文中,我们分析了色调映射HDR视频的感知体验,通过进行主观问卷评估显式,并利用脑电图和外周生理信号隐式。主观评价结果表明,色调映射的HDR视频比低动态范围(LDR)视频更有趣、更自然,画质也更好。在观看音调映射的HDR和LDR视频时记录生理信号,并构建分类系统来探索生理信号捕获的感知差异。在受试者依赖和受试者独立场景下,色调映射HDR和LDR视频的生理信号在分类上存在显著差异。此外,在主体依赖情景下,通过分类检测到高与低感知对比度和整体质量之间信号的显着差异。此外,从伽马频段提取的特征对分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Autonomous Mental Development
IEEE Transactions on Autonomous Mental Development COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ROBOTICS
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Types, Locations, and Scales from Cluttered Natural Video and Actions Guest Editorial Multimodal Modeling and Analysis Informed by Brain Imaging—Part 1 Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data A Robust Gradient-Based Algorithm to Correct Bias Fields of Brain MR Images Editorial Announcing the Title Change of the IEEE Transactions on Autonomous Mental Development in 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1