Modeling and Characterization of Pre-Charged Collapse-Mode CMUTs

M. Saccher, Shinnosuke Kawasaki, J. Klootwijk, R. van Schaijk, Ronald Dekker
{"title":"Modeling and Characterization of Pre-Charged Collapse-Mode CMUTs","authors":"M. Saccher, Shinnosuke Kawasaki, J. Klootwijk, R. van Schaijk, Ronald Dekker","doi":"10.1109/OJUFFC.2023.3240699","DOIUrl":null,"url":null,"abstract":"Recently, the applications of ultrasound transducers expanded from high-end diagnostic tools to point of care diagnostic devices and wireless power receivers for implantable devices. These new applications additionally require that the transducer technology must comply to biocompatibility and manufacturing scalability. In this respect, Capacitive Micromachined Ultrasound Transducers (CMUTs) have a strong advantage compared to the conventional PZT based transducers. However, current CMUTs require a large DC bias voltage for their operation, which limits the miniaturizability of these devices. In this study, we propose a pre-charged collapse-mode CMUT for immersive applications that can operate without an external bias by means of a charge trapping Al2O3 layer embedded in the dielectrics between the top and bottom electrodes. The built-in charge layer was analytically modeled and four layer stack combinations were investigated and characterized. The measurement results of the CMUTs were then used to fit the model and to quantify the amount and type of trapped charge. It was found that these devices polarize due to the ferroelectric-like behavior of the Al2O3, and the amount of charge stored in the charge-trapping layer was estimated to be approximately 0.02 C/m2. Their acoustic performance shows a transmit and receive sensitivity of 8.8 kPa/V and 13.1 V/MPa respectively. In addition, we show that increasing the charging temperature, the charging duration, and the charging voltage results in a higher amount of stored charge. Finally, results of ALT tests showed that these devices have a lifetime of more than 2.5 years at body temperature.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 1","pages":"14-28"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OJUFFC.2023.3240699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, the applications of ultrasound transducers expanded from high-end diagnostic tools to point of care diagnostic devices and wireless power receivers for implantable devices. These new applications additionally require that the transducer technology must comply to biocompatibility and manufacturing scalability. In this respect, Capacitive Micromachined Ultrasound Transducers (CMUTs) have a strong advantage compared to the conventional PZT based transducers. However, current CMUTs require a large DC bias voltage for their operation, which limits the miniaturizability of these devices. In this study, we propose a pre-charged collapse-mode CMUT for immersive applications that can operate without an external bias by means of a charge trapping Al2O3 layer embedded in the dielectrics between the top and bottom electrodes. The built-in charge layer was analytically modeled and four layer stack combinations were investigated and characterized. The measurement results of the CMUTs were then used to fit the model and to quantify the amount and type of trapped charge. It was found that these devices polarize due to the ferroelectric-like behavior of the Al2O3, and the amount of charge stored in the charge-trapping layer was estimated to be approximately 0.02 C/m2. Their acoustic performance shows a transmit and receive sensitivity of 8.8 kPa/V and 13.1 V/MPa respectively. In addition, we show that increasing the charging temperature, the charging duration, and the charging voltage results in a higher amount of stored charge. Finally, results of ALT tests showed that these devices have a lifetime of more than 2.5 years at body temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预充电坍缩模式cmut的建模与表征
近年来,超声换能器的应用范围从高端诊断工具扩展到护理点诊断设备和植入式设备的无线电源接收器。这些新的应用还要求换能器技术必须符合生物相容性和制造可扩展性。在这方面,电容式微机械超声换能器(CMUTs)与传统的PZT换能器相比具有很强的优势。然而,当前的cmut需要较大的直流偏置电压才能运行,这限制了这些器件的小型化。在这项研究中,我们提出了一种用于沉浸式应用的预充电坍缩模式CMUT,通过在上下电极之间的电介质中嵌入电荷捕获Al2O3层,该CMUT可以在没有外部偏置的情况下运行。对内置电荷层进行了解析建模,并对四层叠加组合进行了研究和表征。然后使用cmut的测量结果来拟合模型并量化捕获电荷的数量和类型。研究发现,这些器件由于Al2O3的类铁电行为而极化,并且电荷捕获层中存储的电荷量估计约为0.02 C/m2。其发射灵敏度为8.8 kPa/V,接收灵敏度为13.1 V/MPa。此外,我们还表明,增加充电温度、充电持续时间和充电电压会导致更高的存储电量。最后,ALT测试结果表明,这些装置在体温下的使用寿命超过2.5年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Control of Endemic Epidemic Diseases With Behavioral Response Resilient Multi-Agent Systems Against Denial of Service Attacks via Adaptive and Activatable Network Layers Resiliency Through Collaboration in Heterogeneous Multi-Robot Systems Resilient Synchronization of Pulse-Coupled Oscillators Under Stealthy Attacks Pareto-Optimal Event-Based Scheme for Station and Inter-Station Control of Electric and Automated Buses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1