{"title":"A robust algorithm for estimating regression and dispersion parameters in non-stationary longitudinally correlated Com–Poisson data","authors":"N. M. Khan","doi":"10.1112/S1461157015000339","DOIUrl":null,"url":null,"abstract":"In recent years, Com–Poisson has emerged as one of the most popular discrete models in the analysis of count data owing to its flexibility in handling different types of dispersion. However, in a stationary longitudinal Com–Poisson count data set-up where the covariates are time independent, estimation of regression and dispersion parameters based on a generalized quasi-likelihood (GQL) approach involves some major computational difficulties particularly in the inversion of the joint covariance matrix. On the other hand, in practical real-life longitudinal studies, time-dependent covariates leading to non-stationary responses are more frequently encountered. This implies that further computational problems will now arise when estimating parameters under non-stationary set-ups. This paper overcomes this problem by approximating the inverse of the ill-conditioned covariance matrix in the GQL approach through a multidimensional conjugate gradient method. The performance of this novel version of the GQL approach is then assessed on simulations of AR(1) stationary and AR(1) non-stationary longitudinal Com–Poisson counts and on real-life epileptic seizure counts. However, there is not yet an algorithm to generate non-stationary longitudinal Com–Poisson counts nor a GQL algorithm to estimate the parameters under non-stationary set-ups. Thus, the paper also provides a framework to generate non-stationary AR(1) Com–Poisson counts along with the construction of a GQL equation under non-stationary set-ups.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"25-36"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157015000339","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157015000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
Abstract
In recent years, Com–Poisson has emerged as one of the most popular discrete models in the analysis of count data owing to its flexibility in handling different types of dispersion. However, in a stationary longitudinal Com–Poisson count data set-up where the covariates are time independent, estimation of regression and dispersion parameters based on a generalized quasi-likelihood (GQL) approach involves some major computational difficulties particularly in the inversion of the joint covariance matrix. On the other hand, in practical real-life longitudinal studies, time-dependent covariates leading to non-stationary responses are more frequently encountered. This implies that further computational problems will now arise when estimating parameters under non-stationary set-ups. This paper overcomes this problem by approximating the inverse of the ill-conditioned covariance matrix in the GQL approach through a multidimensional conjugate gradient method. The performance of this novel version of the GQL approach is then assessed on simulations of AR(1) stationary and AR(1) non-stationary longitudinal Com–Poisson counts and on real-life epileptic seizure counts. However, there is not yet an algorithm to generate non-stationary longitudinal Com–Poisson counts nor a GQL algorithm to estimate the parameters under non-stationary set-ups. Thus, the paper also provides a framework to generate non-stationary AR(1) Com–Poisson counts along with the construction of a GQL equation under non-stationary set-ups.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.