A Simplified Test Station for Alkaline Fuel Cell

B. Aremo, M. O. Adeoye, I. Obioh
{"title":"A Simplified Test Station for Alkaline Fuel Cell","authors":"B. Aremo, M. O. Adeoye, I. Obioh","doi":"10.1115/1.4029421","DOIUrl":null,"url":null,"abstract":"For most of the last four decades, the alkaline fuel cell (AFC) has been largely overlooked in favor of the polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC). However, the persistently high costs and complexities of the PEMFC and the SOFC have led to renewed interest in the AFC in recent times. This work reports the designs of custom test fixtures and electronics instrumentation relevant for AFC electrode testing and system optimization. Features implemented in the designs include a real-time voltage measurement unit (VMU), electronic load circuit, and electrolyte heater system. Validation experiments indicated a close agreement between the VMU’s readings, Nernst equation predictions, and readings from a digital voltmeter. The electrolyte heater system’s temperature measurement module was validated with its ability to replicate a cooling profile of ethanol similar to that obtained from a mercury-in-glass thermometer. Materials selection, design considerations, and fabrication steps for other test station components, such as the button-cell test apparatus and the half-cylinder electrolyte heater, were presented. The test station was used for polarization studies of aluminum-air AFC under different conditions of potassium hydroxide (KOH) electrolyte temperature and concentration. The studies revealed optimum values of electrolyte temperature and concentration for the AFC electrode to be 70 °C and 4 M KOH, respectively.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"1 1","pages":"024501"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029421","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For most of the last four decades, the alkaline fuel cell (AFC) has been largely overlooked in favor of the polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC). However, the persistently high costs and complexities of the PEMFC and the SOFC have led to renewed interest in the AFC in recent times. This work reports the designs of custom test fixtures and electronics instrumentation relevant for AFC electrode testing and system optimization. Features implemented in the designs include a real-time voltage measurement unit (VMU), electronic load circuit, and electrolyte heater system. Validation experiments indicated a close agreement between the VMU’s readings, Nernst equation predictions, and readings from a digital voltmeter. The electrolyte heater system’s temperature measurement module was validated with its ability to replicate a cooling profile of ethanol similar to that obtained from a mercury-in-glass thermometer. Materials selection, design considerations, and fabrication steps for other test station components, such as the button-cell test apparatus and the half-cylinder electrolyte heater, were presented. The test station was used for polarization studies of aluminum-air AFC under different conditions of potassium hydroxide (KOH) electrolyte temperature and concentration. The studies revealed optimum values of electrolyte temperature and concentration for the AFC electrode to be 70 °C and 4 M KOH, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种简化碱性燃料电池试验台
在过去的四十年中,碱性燃料电池(AFC)在很大程度上被聚合物电解质膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)所忽视。然而,由于PEMFC和SOFC的高成本和复杂性,近年来人们对AFC重新产生了兴趣。这项工作报告了与AFC电极测试和系统优化相关的定制测试夹具和电子仪器的设计。在设计中实现的功能包括实时电压测量单元(VMU),电子负载电路和电解质加热系统。验证实验表明,VMU的读数、能斯特方程预测和数字电压表的读数之间存在密切的一致性。电解质加热器系统的温度测量模块经过验证,其能够复制乙醇的冷却曲线,类似于从玻璃汞温度计获得的冷却曲线。介绍了其他试验台部件的材料选择、设计考虑和制造步骤,如钮扣电池试验装置和半圆柱形电解质加热器。利用该试验站对不同氢氧化钾(KOH)电解液温度和浓度条件下铝-空气AFC的极化特性进行了研究。研究表明,AFC电极的最佳电解液温度和浓度分别为70°C和4 M KOH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.
期刊最新文献
Real-life omalizumab exposure and discontinuation in a large nationwide population-based study of paediatric and adult asthma patients. Response to Letter to the Editor. What Is Monkeypox? Management of Primary Angle-Closure Glaucoma. Surface Treatments of Stainless Steel by Electroless Silver Coatings as a Bipolar Plate for Proton Exchange Membrane Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1