{"title":"SOFC Stack Model for Integration Into a Hybrid System: Stack Response to Control Variables","authors":"Michael M. Whiston, M. Bilec, L. Schaefer","doi":"10.1115/1.4029877","DOIUrl":null,"url":null,"abstract":"Due to the tight coupling of physical processes inside solid oxide fuel cells (SOFCs), efficient control of these devices depends largely on the proper pairing of controlled and manipulated variables. The present study investigates the uncontrolled, dynamic behavior of an SOFC stack that is intended for use in a hybrid SOFC-gas turbine (GT) system. A numerical fuel cell model is developed based on charge, species mass, energy, and momentum balances, and an equivalent circuit is used to combine the fuel cell's irreversibilities. The model is then verified on electrochemical, mass, and thermal timescales. The open-loop response of the average positive electrode-electrolyte-negative electrode (PEN) temperature, fuel utilization, and SOFC power to step changes in the inlet fuel flow rate, current density, and inlet air flow rate is simulated on different timescales. Results indicate that manipulating the current density is the quickest and most efficient way to change the SOFC power. Meanwhile, manipulating the fuel flow is found to be the most efficient way to change the fuel utilization. In future work, it is recommended that such control strategies be further analyzed and compared in the context of a complete SOFC-GT system model.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"031006"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4029877","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4029877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Due to the tight coupling of physical processes inside solid oxide fuel cells (SOFCs), efficient control of these devices depends largely on the proper pairing of controlled and manipulated variables. The present study investigates the uncontrolled, dynamic behavior of an SOFC stack that is intended for use in a hybrid SOFC-gas turbine (GT) system. A numerical fuel cell model is developed based on charge, species mass, energy, and momentum balances, and an equivalent circuit is used to combine the fuel cell's irreversibilities. The model is then verified on electrochemical, mass, and thermal timescales. The open-loop response of the average positive electrode-electrolyte-negative electrode (PEN) temperature, fuel utilization, and SOFC power to step changes in the inlet fuel flow rate, current density, and inlet air flow rate is simulated on different timescales. Results indicate that manipulating the current density is the quickest and most efficient way to change the SOFC power. Meanwhile, manipulating the fuel flow is found to be the most efficient way to change the fuel utilization. In future work, it is recommended that such control strategies be further analyzed and compared in the context of a complete SOFC-GT system model.
期刊介绍:
The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.