Microscale Correlations Adoption in Solid Oxide Fuel Cell

C. Wang
{"title":"Microscale Correlations Adoption in Solid Oxide Fuel Cell","authors":"C. Wang","doi":"10.1115/1.4031153","DOIUrl":null,"url":null,"abstract":"In order to develop a predictive model of real cell performance, firm relationships and assumptions need to be established for the definition of the physical and microstructure parameters for solid oxide fuel cells (SOFCs). This study explores the correlations of microstructure parameters from a microscale level, together with mass transfer and electrochemical reactions inside the electrodes, providing a novel approach to predict SOFC performance numerically. Based on the physical connections and interactions of microstructure parameters, two submodel correlations (i.e., porosity–tortuosity and porosity–particle size ratio) are proposed. Three experiments from literature are selected to facilitate the validation of the numerical results with experimental data. In addition, a sensitivity analysis is performed to investigate the impact of the adopted submodel correlations to the SOFC performance predictions. Normally, the microstructural inputs in the numerical model need to be measured by experiments in order to test the real cell performance. By adopting the two submodel correlations, the simulation can be performed without obtaining relatively hard-to-measure microstructural parameters such as tortuosity and particle size, yet still accurately mimicking a real-world well-structured SOFC operation. By accurately and rationally predicting the microstructural parameters, this study can eventually help to aid the experimental and optimization study of SOFC.","PeriodicalId":15829,"journal":{"name":"Journal of Fuel Cell Science and Technology","volume":"12 1","pages":"041006"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/1.4031153","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuel Cell Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4031153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In order to develop a predictive model of real cell performance, firm relationships and assumptions need to be established for the definition of the physical and microstructure parameters for solid oxide fuel cells (SOFCs). This study explores the correlations of microstructure parameters from a microscale level, together with mass transfer and electrochemical reactions inside the electrodes, providing a novel approach to predict SOFC performance numerically. Based on the physical connections and interactions of microstructure parameters, two submodel correlations (i.e., porosity–tortuosity and porosity–particle size ratio) are proposed. Three experiments from literature are selected to facilitate the validation of the numerical results with experimental data. In addition, a sensitivity analysis is performed to investigate the impact of the adopted submodel correlations to the SOFC performance predictions. Normally, the microstructural inputs in the numerical model need to be measured by experiments in order to test the real cell performance. By adopting the two submodel correlations, the simulation can be performed without obtaining relatively hard-to-measure microstructural parameters such as tortuosity and particle size, yet still accurately mimicking a real-world well-structured SOFC operation. By accurately and rationally predicting the microstructural parameters, this study can eventually help to aid the experimental and optimization study of SOFC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固体氧化物燃料电池中微尺度相关性的应用
为了建立真实电池性能的预测模型,需要建立牢固的关系和假设来定义固体氧化物燃料电池(sofc)的物理和微观结构参数。本研究从微观层面探讨了微观结构参数的相关性,以及电极内部的传质和电化学反应,为数值预测SOFC性能提供了一种新的方法。基于微观结构参数之间的物理联系和相互作用,提出了孔隙度-扭曲度和孔隙度-粒径比两个子模型的关联关系。为了便于数值结果与实验数据的验证,本文从文献中选取了三个实验。此外,还进行了敏感性分析,以研究所采用的子模型相关性对SOFC性能预测的影响。通常,数值模型中的微观结构输入需要通过实验来测量,以测试真实的电池性能。通过采用两个子模型相关性,模拟可以在不获得相对难以测量的微观结构参数(如扭曲度和粒度)的情况下进行,但仍然可以准确地模拟现实世界中结构良好的SOFC操作。通过准确合理地预测微观结构参数,本研究最终有助于SOFC的实验和优化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Fuel Cell Science and Technology publishes peer-reviewed archival scholarly articles, Research Papers, Technical Briefs, and feature articles on all aspects of the science, engineering, and manufacturing of fuel cells of all types. Specific areas of importance include, but are not limited to: development of constituent materials, joining, bonding, connecting, interface/interphase regions, and seals, cell design, processing and manufacturing, multi-scale modeling, combined and coupled behavior, aging, durability and damage tolerance, reliability, availability, stack design, processing and manufacturing, system design and manufacturing, power electronics, optimization and control, fuel cell applications, and fuels and infrastructure.
期刊最新文献
Real-life omalizumab exposure and discontinuation in a large nationwide population-based study of paediatric and adult asthma patients. Response to Letter to the Editor. What Is Monkeypox? Management of Primary Angle-Closure Glaucoma. Surface Treatments of Stainless Steel by Electroless Silver Coatings as a Bipolar Plate for Proton Exchange Membrane Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1