Determining a Number of Training Data for Gesture Recognition Considering Decay in Gesture Movements

Q4 Computer Science Journal of Information Processing Pub Date : 2015-01-01 DOI:10.11185/IMT.10.449
Kazuya Murao, Gaku Yoshida, T. Terada, M. Tsukamoto
{"title":"Determining a Number of Training Data for Gesture Recognition Considering Decay in Gesture Movements","authors":"Kazuya Murao, Gaku Yoshida, T. Terada, M. Tsukamoto","doi":"10.11185/IMT.10.449","DOIUrl":null,"url":null,"abstract":"– Mobile phones and video game controllers using gesture recognition technologies enable easy and intuitive operations, such as those in drawing objects. Gesture recognition systems generally require several samples of training data before recognition takes place. However, recognition accuracy deteriorates as time passes since the trajectory of the gestures changes due to fatigue or forgetfulness. We investigated the change in gestures and found that the first several samples of gestures were not suitable for training data. Therefore, we propose two methods of finding appropriate data for training for long-term use. We confirmed that the proposed methods found better training data than the conventional method from the viewpoints of the number of data collected and recognition accuracy.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"10 1","pages":"449-458"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11185/IMT.10.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

– Mobile phones and video game controllers using gesture recognition technologies enable easy and intuitive operations, such as those in drawing objects. Gesture recognition systems generally require several samples of training data before recognition takes place. However, recognition accuracy deteriorates as time passes since the trajectory of the gestures changes due to fatigue or forgetfulness. We investigated the change in gestures and found that the first several samples of gestures were not suitable for training data. Therefore, we propose two methods of finding appropriate data for training for long-term use. We confirmed that the proposed methods found better training data than the conventional method from the viewpoints of the number of data collected and recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑手势运动衰减的手势识别训练数据的确定
-使用手势识别技术的手机和视频游戏控制器可以轻松直观地操作,例如绘制对象。手势识别系统在进行识别之前通常需要几个训练数据样本。然而,随着时间的推移,识别的准确性会下降,因为手势的轨迹会因疲劳或遗忘而改变。我们研究了手势的变化,发现手势的前几个样本不适合训练数据。因此,我们提出了两种方法来寻找适合长期使用的训练数据。从数据采集量和识别准确率两方面验证了所提方法比传统方法找到更好的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Container-native Managed Data Sharing Editor's Message to Special Issue of Computer Security Technologies for Secure Cyberspace Understanding the Inconsistencies in the Permissions Mechanism of Web Browsers An Analysis of Susceptibility to Phishing via Business Chat through Online Survey Analysis and Consideration of Detection Methods to Prevent Fraudulent Access by Utilizing Attribute Information and the Access Log History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1