Recent Large Graph Visualization Tools : A Review

Q4 Computer Science Journal of Information Processing Pub Date : 2013-01-01 DOI:10.11185/IMT.8.944
Sorn Jarukasemratana, T. Murata
{"title":"Recent Large Graph Visualization Tools : A Review","authors":"Sorn Jarukasemratana, T. Murata","doi":"10.11185/IMT.8.944","DOIUrl":null,"url":null,"abstract":"Large graph visualization tools are important instruments for researchers to understand large graph data sets. Currently there are many tools available for download and use under free license,others in research papers or journals, each with its own functionalities and capabilities. This review focuses on giving an introduction to those large graph visualization tools and emphasizes their advantages over other tools. Criteria for selection of the tools being reviewed are it was recently published (2009 or later), or a new version was released during the last two years. The tools being reviewed in this paper are igraph, Gephi, Cytoscape, Tulip, WiGis, CGV, VisANT, Pajek, In Situ Framework, Honeycomb and two visualization toolkits which are JavaScript InfoVis Toolkit and GraphGL. The last part of the review presents our suggestion on building large graph visualization platform based on advantages of tools and toolkits that are being reviewed.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"56 1","pages":"944-960"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11185/IMT.8.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

Large graph visualization tools are important instruments for researchers to understand large graph data sets. Currently there are many tools available for download and use under free license,others in research papers or journals, each with its own functionalities and capabilities. This review focuses on giving an introduction to those large graph visualization tools and emphasizes their advantages over other tools. Criteria for selection of the tools being reviewed are it was recently published (2009 or later), or a new version was released during the last two years. The tools being reviewed in this paper are igraph, Gephi, Cytoscape, Tulip, WiGis, CGV, VisANT, Pajek, In Situ Framework, Honeycomb and two visualization toolkits which are JavaScript InfoVis Toolkit and GraphGL. The last part of the review presents our suggestion on building large graph visualization platform based on advantages of tools and toolkits that are being reviewed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最近的大型图形可视化工具:综述
大型图形可视化工具是研究人员理解大型图形数据集的重要工具。目前有许多工具可以免费下载和使用,其他工具在研究论文或期刊中,每个工具都有自己的功能和能力。本文主要介绍了这些大型图形可视化工具,并强调了它们相对于其他工具的优势。被审查的工具的选择标准是最近发布的(2009年或以后),或者在最近两年内发布的新版本。本文主要介绍的可视化工具有:igraph、Gephi、Cytoscape、Tulip、WiGis、CGV、VisANT、Pajek、in Situ Framework、Honeycomb以及JavaScript InfoVis Toolkit和GraphGL。回顾的最后一部分,根据回顾的工具和工具包的优势,提出了我们对构建大型图形可视化平台的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Container-native Managed Data Sharing Editor's Message to Special Issue of Computer Security Technologies for Secure Cyberspace Understanding the Inconsistencies in the Permissions Mechanism of Web Browsers An Analysis of Susceptibility to Phishing via Business Chat through Online Survey Analysis and Consideration of Detection Methods to Prevent Fraudulent Access by Utilizing Attribute Information and the Access Log History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1