M. Taira, Wataru Hatakeyama, Jun Yokota, N. Chosa, A. Ishisaki, Kyoko Takafuji, Hidemichi Kihara, H. Kondo, Masayuki Hattori
{"title":"Tracking GFP-labeled Transplanted Mouse MSC in Nude Mice Using in Vivo Fluorescence Imaging","authors":"M. Taira, Wataru Hatakeyama, Jun Yokota, N. Chosa, A. Ishisaki, Kyoko Takafuji, Hidemichi Kihara, H. Kondo, Masayuki Hattori","doi":"10.11344/NANO.6.73","DOIUrl":null,"url":null,"abstract":"73 Introduction Stem cell therapy is now considered as a new therapeutic method to restore damaged organ including injured liver [1]. One important source of stem cells is mesenchymal stem cells (MSC) [2]. MSC can be easily collected from bone marrows of patients [3]. MSC is chemotactic to damaged organs and tissues which often secret cytokines and chemokines [4]. Subsequently, MSC can settle and multiply in the damaged zones (namely, by homing phenomenon), and often heal the damaged or inflamed organ and tissues [5]. This phenomenon has, however, not well been understood, yet. The fluorescent nature of the cells from green fluorescent protein (GFP)-transgenic mice facilitate the use in many kinds of cell transplantation experiments [6]. Immunitycompromised mice (nude mice) have been used as host animal so that the relation between transplanted GFP-transgenic mouse cells and host nude mouse body could be clarified [7]. The purpose of this study was, therefore, to monitor the fate of GFP-labeled transgenic Tracking GFP-labeled Transplanted Mouse MSC in Nude Mice Using in Vivo Fluorescence Imaging","PeriodicalId":19070,"journal":{"name":"Nano Biomedicine","volume":"6 1","pages":"73-77"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.11344/NANO.6.73","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11344/NANO.6.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
73 Introduction Stem cell therapy is now considered as a new therapeutic method to restore damaged organ including injured liver [1]. One important source of stem cells is mesenchymal stem cells (MSC) [2]. MSC can be easily collected from bone marrows of patients [3]. MSC is chemotactic to damaged organs and tissues which often secret cytokines and chemokines [4]. Subsequently, MSC can settle and multiply in the damaged zones (namely, by homing phenomenon), and often heal the damaged or inflamed organ and tissues [5]. This phenomenon has, however, not well been understood, yet. The fluorescent nature of the cells from green fluorescent protein (GFP)-transgenic mice facilitate the use in many kinds of cell transplantation experiments [6]. Immunitycompromised mice (nude mice) have been used as host animal so that the relation between transplanted GFP-transgenic mouse cells and host nude mouse body could be clarified [7]. The purpose of this study was, therefore, to monitor the fate of GFP-labeled transgenic Tracking GFP-labeled Transplanted Mouse MSC in Nude Mice Using in Vivo Fluorescence Imaging