Composite motifs integrating multiple protein structures increase sensitivity for function prediction.

B. Chen, D. Bryant, Amanda E. Cruess, Joseph H Bylund, V. Fofanov, D. Kristensen, M. Kimmel, O. Lichtarge, L. Kavraki
{"title":"Composite motifs integrating multiple protein structures increase sensitivity for function prediction.","authors":"B. Chen, D. Bryant, Amanda E. Cruess, Joseph H Bylund, V. Fofanov, D. Kristensen, M. Kimmel, O. Lichtarge, L. Kavraki","doi":"10.1142/9781860948732_0035","DOIUrl":null,"url":null,"abstract":"The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources.","PeriodicalId":72665,"journal":{"name":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","volume":"6 1","pages":"343-55"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational systems bioinformatics. Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860948732_0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合多种蛋白质结构的复合基序增加了功能预测的敏感性。
疾病的研究往往依赖于蛋白质的生物学功能,但确定蛋白质的功能是一个困难的实验过程。为了尽量减少重复工作,功能预测算法寻求指示可能的蛋白质功能的特征。一种方法是识别代表已知活性位点的基序与具有未知功能的靶蛋白结构之间的几何和化学相似性的亚结构匹配。在早期的工作中,某些有效基序的统计显著匹配已经确定了功能相关的活性位点。有效的基序必须精心设计,以保持与功能相关位点的相似性(敏感性),并避免与功能无关的蛋白质几何结构的偶然相似性(特异性)。现有的基序设计技术使用单个蛋白质结构的几何形状。如果选择的功能位点与功能相关位点缺乏相似性,则这种结构的选择不当会限制基序的有效性。为了解决这个问题,本文提出了复合基序,它结合了功能相关活性位点的结构,以潜在地提高灵敏度。我们的实验比较了复合基序和由单一蛋白质结构设计的简单基序的有效性。在六个不同的功能相关蛋白家族中,留一测试表明,复合基序的敏感性与所有简单基序中最敏感的基序相当,特异性与一般的简单基序相当。在我们的数据集中,我们观察到复合基序同时捕获活性位点构象的变化,减少了选择基序结构的问题,并使来自不同数据源的蛋白质结构融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data. Estimating support for protein-protein interaction data with applications to function prediction. On the accurate construction of consensus genetic maps. Efficient haplotype inference from pedigrees with missing data using linear systems with disjoint-set data structures. Knowledge representation and data mining for biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1