Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity.

Q1 Medicine EcoSal Plus Pub Date : 2016-11-01 DOI:10.1128/ecosalplus.ESP-0010-2016
James E Galen, Amanda D Buskirk, Sharon M Tennant, Marcela F Pasetti
{"title":"Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity.","authors":"James E Galen, Amanda D Buskirk, Sharon M Tennant, Marcela F Pasetti","doi":"10.1128/ecosalplus.ESP-0010-2016","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"7 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0010-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类沙门氏菌减毒活疫苗候选者:追踪自然感染中的病原体并刺激宿主免疫。
由沙门氏菌属成员引起的沙门氏菌病是全球动物和人类发病和死亡的主要原因。在本综述中,我们将讨论伤寒沙门氏菌和鼠伤寒沙门氏菌的致病机理,重点是人类沙门氏菌感染。我们将追溯沙门氏菌在体内的传播路径,包括宿主进入的部位、受影响的组织和器官,以及致病和刺激宿主免疫的机制。仔细考虑疾病的自然发展过程为合理设计和开发口服减毒活疫苗提供了重要的背景。有鉴于此,我们将介绍一系列减毒口服活疫苗,这些疫苗已成功通过临床试验,并被证明既安全又具有高免疫原性。本综述中总结的减毒策略为进一步开发针对其他沙门氏菌的减毒疫苗提供了重要的启示,目前还没有针对其他沙门氏菌的口服减毒活疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Type IV pili of Enterobacteriaceae species. Transcription activation in Escherichia coli and Salmonella. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1