Unified Analysis with Mixed Finite Element Formulation for Acoustic-Porous-Structure Multiphysics System

G. Yoon
{"title":"Unified Analysis with Mixed Finite Element Formulation for Acoustic-Porous-Structure Multiphysics System","authors":"G. Yoon","doi":"10.1142/S0218396X15500022","DOIUrl":null,"url":null,"abstract":"This research aims to develop a novel unified analysis method for an acoustic-porous-structure multiphysics interaction system when the porous medium is modeled by the empirical Delany–Bazley formulation. Multiphysics analysis of acoustic structure interaction is commonly performed by solving the linear elasticity and Helmholtz equations separately and enforcing a mutual coupling boundary condition. If the pressure attenuation from a porous material is additionally considered, the multiphysics analysis becomes highly intricate, because three different media (acoustic, porous, and elastic structures) with different governing equations and interaction boundary conditions should be properly formulated. To overcome this difficulty, this paper proposes the application of a novel mixed formulation to consider the mutual coupling effects among the acoustic, fibrous (porous), and elastic structure media. By combining the mixed finite element formulation with the Delany–Bazley formulation, a multiphysics simulation of sound propagation considering the coupling effects among the three media can be easily conducted. To show the validity of the present unified approach, several benchmark problems are considered.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"23 1","pages":"1550002"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X15500022","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X15500022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

This research aims to develop a novel unified analysis method for an acoustic-porous-structure multiphysics interaction system when the porous medium is modeled by the empirical Delany–Bazley formulation. Multiphysics analysis of acoustic structure interaction is commonly performed by solving the linear elasticity and Helmholtz equations separately and enforcing a mutual coupling boundary condition. If the pressure attenuation from a porous material is additionally considered, the multiphysics analysis becomes highly intricate, because three different media (acoustic, porous, and elastic structures) with different governing equations and interaction boundary conditions should be properly formulated. To overcome this difficulty, this paper proposes the application of a novel mixed formulation to consider the mutual coupling effects among the acoustic, fibrous (porous), and elastic structure media. By combining the mixed finite element formulation with the Delany–Bazley formulation, a multiphysics simulation of sound propagation considering the coupling effects among the three media can be easily conducted. To show the validity of the present unified approach, several benchmark problems are considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声-多孔结构多物理场系统的混合有限元统一分析
本研究旨在建立一种基于delanyi - bazley经验公式模拟多孔介质时声-孔-结构多物理场相互作用系统的统一分析方法。声学结构相互作用的多物理场分析通常是通过分别求解线性弹性方程和亥姆霍兹方程并施加相互耦合的边界条件来进行的。如果额外考虑多孔材料的压力衰减,则多物理场分析变得非常复杂,因为需要适当地制定具有不同控制方程和相互作用边界条件的三种不同介质(声学、多孔和弹性结构)。为了克服这一困难,本文提出了一种新的混合配方,以考虑声学、纤维(多孔)和弹性结构介质之间的相互耦合效应。将混合有限元公式与Delany-Bazley公式相结合,可以方便地进行考虑三种介质之间耦合效应的声音传播多物理场模拟。为了证明该统一方法的有效性,还考虑了几个基准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.
期刊最新文献
Nonlinear Distortion Characteristic Analysis for the Finite Amplitude Sound Pressures in the Pistonphone Acoustic Imaging with Compressed Sensing and Microphone Arrays Acoustical Green’s Function and Boundary Element Techniques for 3D Half-Space Problems A numerical model of an acoustic metamaterial using the boundary element method including viscous and thermal losses Diffusion Equation-Based Finite Element Modeling of a Monumental Worship Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1