A Description of Multiscale Modeling for the Head-Disk Interface Focusing on Bottom-Level Lubricant and Carbon Overcoat Models

IF 1.5 Q3 ENGINEERING, MECHANICAL Advances in Tribology Pub Date : 2013-04-10 DOI:10.1155/2013/794151
M. Jhon, P. Chung, Robert Smith, L. Biegler
{"title":"A Description of Multiscale Modeling for the Head-Disk Interface Focusing on Bottom-Level Lubricant and Carbon Overcoat Models","authors":"M. Jhon, P. Chung, Robert Smith, L. Biegler","doi":"10.1155/2013/794151","DOIUrl":null,"url":null,"abstract":"The challenges in designing future head disk interface (HDI) demand efficient theoretical modeling tools with flexibility in investigating various combinations of perfluoropolyether (PFPE) and carbon overcoat (COC) materials. For broad range of time and length scales, we developed multiscale/multiphysical modeling approach, which can bring paradigm-shifting improvements in advanced HDI design. In this paper, we introduce our multiscale modeling methodology with an effective strategic framework for the HDI system. Our multiscale methodology in this paper adopts a bottom to top approach beginning with the high-resolution modeling, which describes the intramolecular/intermolecular PFPE-COC degrees of freedom governing the functional oligomeric molecular conformations on the carbon surfaces. By introducing methodology for integrating atomistic/molecular/mesoscale levels via coarse-graining procedures, we investigated static and dynamic properties of PFPE-COC combinations with various molecular architectures. By bridging the atomistic and molecular scales, we are able to systematically incorporate first-principle physics into molecular models, thereby demonstrating a pathway for designing materials based on molecular architecture. We also discussed future materials (e.g., graphene for COC, star-like PFPEs) and systems (e.g., heat-assisted magnetic recording (HAMR)) with higher scale modeling methodology, which enables the incorporation of molecular/mesoscale information into the continuum scale models.","PeriodicalId":44668,"journal":{"name":"Advances in Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2013-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/794151","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/794151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

The challenges in designing future head disk interface (HDI) demand efficient theoretical modeling tools with flexibility in investigating various combinations of perfluoropolyether (PFPE) and carbon overcoat (COC) materials. For broad range of time and length scales, we developed multiscale/multiphysical modeling approach, which can bring paradigm-shifting improvements in advanced HDI design. In this paper, we introduce our multiscale modeling methodology with an effective strategic framework for the HDI system. Our multiscale methodology in this paper adopts a bottom to top approach beginning with the high-resolution modeling, which describes the intramolecular/intermolecular PFPE-COC degrees of freedom governing the functional oligomeric molecular conformations on the carbon surfaces. By introducing methodology for integrating atomistic/molecular/mesoscale levels via coarse-graining procedures, we investigated static and dynamic properties of PFPE-COC combinations with various molecular architectures. By bridging the atomistic and molecular scales, we are able to systematically incorporate first-principle physics into molecular models, thereby demonstrating a pathway for designing materials based on molecular architecture. We also discussed future materials (e.g., graphene for COC, star-like PFPEs) and systems (e.g., heat-assisted magnetic recording (HAMR)) with higher scale modeling methodology, which enables the incorporation of molecular/mesoscale information into the continuum scale models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以底层润滑剂和碳涂层模型为重点的磁碟界面多尺度建模方法
设计未来磁头磁盘接口(HDI)的挑战需要高效的理论建模工具,并且能够灵活地研究全氟聚醚(PFPE)和碳涂层(COC)材料的各种组合。对于大范围的时间和长度尺度,我们开发了多尺度/多物理模型方法,可以为高级HDI设计带来范式转换。在本文中,我们介绍了我们的多尺度建模方法,并为HDI系统提供了有效的战略框架。本文的多尺度方法采用从下到上的方法,从高分辨率建模开始,描述了分子内/分子间PFPE-COC的自由度,这些自由度控制着碳表面上的功能性低聚分子构象。通过引入通过粗粒度程序整合原子/分子/中尺度水平的方法,我们研究了具有不同分子结构的PFPE-COC组合的静态和动态特性。通过连接原子和分子尺度,我们能够系统地将第一性物理原理纳入分子模型,从而展示了基于分子结构设计材料的途径。我们还讨论了未来的材料(例如,用于COC的石墨烯,星形pfpe)和系统(例如,热辅助磁记录(HAMR))与更高尺度建模方法,这使得分子/中尺度信息整合到连续尺度模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Tribology
Advances in Tribology ENGINEERING, MECHANICAL-
CiteScore
5.00
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊最新文献
Experimental Comparison of the Effect of Using Synthetic, Semi-Synthetic, and Mineral Engine Oil on Gasoline Engine Parts Wear A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels Mathematical Modeling of the Bearing Ratio Curve Rmr (50% Rz), through Investigation of the Effect of Process Parameters in Hard Turning of Steel C55 (DIN) with Mixed Ceramics MC2 (Al2O3 + TiC) Tribological and Mechanical Properties of Gradient Coating on Al2O3-Based Coating Produced by Detonation Spraying Methods Investigation on the Cutting Force and Surface Quality in Harmonically Vibrated Broaching (HVB)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1